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1 Introduction and Motivation: “Can you fit a banana?”

During the past decade, NASA’s astrophysical mission designers have been challenged by admin-
istrators to do more science with fewer dollars. The “faster-better-cheaper” paradigm of mission
design has lead to many innovative mission concepts which achieve lower total mission cost at the
price of having some distortion in the optical design of instruments and/or telescopes. One way of
compensating for distorted optics is to do more image processing with clever algorithms.

Technology Readiness Level (TRL) [34] enhancement programs, like the Applied Information
Systems Research (AISR) program, can significantly help NASA’s astrophysical mission designers
by promoting the development of new image processing algorithms from a basic technology research
level (e.g., TR Levels 1-3) to the point where mission designers can consider using these new image
processing algorithms in future NASA missions (e.g., TR Levels 5-6). Space-based demonstration
of new technologies is clearly beyond the scope and means of AISR, yet AISR can develop new
applied information systems technologies which would be excellent candidates for consideration
for use in demonstrator programs like the New Millennium Program [29] which tests advanced
technology for use in space flight.

One of the early design concepts for the 8-m Next Generation Space Telescope (NGST), currently
known as the 6.5-m James Webb Space Telescope (JWST), had a very elliptical primary mirror
in order to fit it into a 4-m diameter launch shroud. John Mather, the NGST Project Scientist,
described this concept to the Principal Investigator (PI) in January 1999 at the 193rd meeting of
the American Astronomical Society (AAS) in Austin, Texas. Mather explained that the downside of
the elliptical primary mirror design was the fact that the oddly shaped primary mirror would cause
stars to be shaped like bananas. Mather asked the PI: “Can you fit a banana?” The PI answered:
“Yes.” As there was no clear consensus within the NGST project in 1999 whether accurate stellar
photometry and astrometry was theoretically and/or practically possible with complex distorted
Point Spread Functions (PSFs), Mather replied: “Prove it!”

With support of the two-year AISR grant S-13811-G, the PI has now met Mather’s challenge by
proving that precise and accurate stellar photometry and astrometry is possible and practical with
ugly space-based PSFs which have high spatial frequencies rarely seen in ground-based astronomy
due to the blurring of the Earth’s atmosphere. The PI has recently demonstrated [24] that the
current C implementation of his MATPHOT algorithm [12] [1] can achieve millipixel relative as-
trometry and millimag photometric precision with complicated space-based discrete Point Spread
Functions imaged onto imperfect detectors with large intrapixel quantum efficiency variations.
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2 AISR Grant S-13811-G Results

2.1 QLWFPC2: Quick-Look WFPC2 Stellar Photometry

The PI wrote a parallel-processing stellar photometry code called QLWFPC2 [31] [20][19] which
was designed to do quick-look analysis of two entire WFPC2 (Wide Field Planetary Camera 2)
[2] observations from the Hubble Space Telescope (HST) in under 5 seconds using a fast Beowulf
cluster with a Gigabit Ethernet local network. This program is written in ANSI C and uses the
MPICH [28] implementation of the Message Passing Interface (MPI) [27] for the parallel-processing
communications, the CFITSIO [3] library (from HEASARC at NASA’s Goddard Space Flight Cen-
ter) for reading the FITS [4] standard files from the Hubble Space Telescope Data Archive 7], and
the Parameter Interface Library (PIL)[30] (from the INTEGRAL Science Data Center) for the
IRAF [8] parameter-file user interface. Stellar instrumental (flight-system) magnitudes are con-
verted to standard colors using the color-transformation equations of the HST WFPC2 Team [5].

QLWFPC2 Performance on a 5—node Beowulf Cluster
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Figure 1. Typical QLWFPC2 performance.

QLWFPC2 running on four 1.8-GHz processors takes about 2.4 seconds (see Figure 1) to ana-
lyze the WEFPC2 archive datasets u37ga407r.c0.fits (F555W; 300 s) and u37ga401r.c0.fits (F814W;
300 s) of M54 (NGC 6715) which is the bright massive globular cluster near the center of the nearby
Sagittarius dwarf spheroidal galaxy (see Figure 2).
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Figure 2. QLWFPC2 analysis of M54.

By default QLWFPC2 stellar photometry of M54 results are given in a human-readable ASCII text
which can be easily transformed into a color-magnitude diagram using publication-grade graphics
packages like SuperMongo [33] (middle figure of Fig. 2). QLWFPC2 also produces XML output
files that are compliant with the U.S. National Virtual Observatory [36] VOTable standard [37];
the QLWFPC2 XML output files can be viewed with Java-based VOTable viewers like Starlink’s
TOPCAT [35] (right figure of Fig. 2).

Six F555W filter observations of M54 were obtained for the HST observing program GO-6701
(PI:Ibata). QLWEFPC2 was run on all 15 pair combinations of the F555W observations; more
than one million stars were analyzed in 42 seconds of wall-clock time. Searching for
evidence of significant variability in the magnitudes of individual stars lead to the serendipitous
discovery [32][26] of many new variable stars in the central region of this extragalactic star cluster
— a region where no variables have been reported by previous ground-based studies (see Figure
3). Stars exhibiting significant variability are shown with large squares. Helium-burning RR Lyrae
candidates are expected to be found in the gray region of the magnitude-Amagnitude diagram on
the left and most of the variable stars found with this quick-look time-domain QLWFPC2 analysis
are found at the expected location for RR Lyraes on M54’s horizontal-branch in the color-magnitude
diagram on the right. Many of the fainter variable candidates are likely to be eclipsing binaries.
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Figure 3. Discovery of variable stars in the central region of M54 using QLWFPC2.
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This discovery is an example of how QLWFPC2 can be used to quickly explore the time domain
of observations in the HST Data Archive. The PI and Roederer [25] used QLWFPC?2 to
discover flickering red giants in the nearby Ursa Minor dwarf spheroidal galaxy.

Reading two HST WFPC2 datasets and writing 5 megabytes of output on a 7200-rpm NFS-
mounted disk takes takes about one second of the typical 2.4 s total execution time. Excluding
disk I/0, QLWFPC2 analyzes about 10,000 stars per second per filter per CPU GHz.

Figure 1 shows typical QLWFPC2 performance results with two WFPC2 observations of a Local
Group globular cluster running on the PI's research development 5-node Beowulf cluster with 1.8-
GHz AMD Athalon CPUs and a Gigabit Ethernet local network. The thin line of Fig. 1 shows
a simple performance model based on measured cluster performance metrics (network bandwidth,
disk drive bandwidth, and execution time of QLWFPC2 with a single CPU). The thick line shows
the theoretical limit of performance. Note that the current version of the QLWFPC2 algorithm
already meets the ideal performance values for 1, 2, and 4 processors. A single WFPC2 dataset is
about 10 Mbytes in size and is partitioned into four calibrated images from the PC1, WF2, WF3,
and the WF4 cameras; the current QLWFPC2 analysis algorithm sends all of the image data from
one WFPC2 camera to a single compute (slave) node for analysis — the increase in computation
time for 3 (5) processors compared to 2 (4) processors reflects the underlying 4-fold partitioning
of a single WFPC2 dataset [38]. Spreading the analysis of data from a WFPC2 camera to all
compute nodes would improve the computation time for 3 and 5 (and more) processors but would
not improve the results for 1, 2 and 4 processors which are already optimal.

Gigabit Ethernet was the critical cluster parameter for achieving the AISR project
design goal of typical execution times of significantly less than 5 seconds. Fast Ethernet
would have been too slow since the time penalty for transmitting the data over Fast Ethernet would
have exceeded the computation time required for a single CPU.

2.2 MATPHOT: Photometry & Astrometry with Discrete PSF's

The PI has developed a C-language implementation of his MATPHOT algorithm for precise and
accurate stellar photometry and astrometry with discrete PSFs [24][23][22] [21][18] [17][16] [15] [14].
The MATPHOT code uses discrete (sampled) Point Spread Functions consisting of a numerical
table represented by a matrix in the form of a FITS [4] image. Discrete PSFs are shifted within an
observational model using a 21-pixel-wide damped sinc function,
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and position partial derivatives are computed using a five-point numerical differentiation formula,
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[24]. Precise and accurate stellar photometry and astrometry are achieved with undersampled
CCD observations by using supersampled discrete PSFs that are sampled 2, 3, or more times
more finely than the observational data. Although these numerical techniques are not mathemati-
cally perfect, they are sufficiently accurate for precision stellar photometry and astrometry due to
photon noise which is present in all astronomical imaging observations [24] [22] [21]. The current
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implementation [12] [1] of the MATPHOT algorithm is based on a robust implementation of the
Levenberg-Marquardt method of nonlinear least-squares minimization [10] [11] [13] [14]. Detailed
analysis of simulated Next Generation Space Telescope (NGST) observations demonstrate that

millipixel relative astrometry and millimag photometric precision is achievable with complicated
space-based discrete PSFs [24].

8.0-m NGST TRW-concept V-band realistic (PSF:2x2)
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Figure 4. MATPHOT analysis of 10,000 simulated NGST stellar observations.

A simulated NGST V-band stellar observation with the 8-meter TRW-concept 1.5-micron
diffraction-limited primary mirror is shown in Figure 4 with the 90%, 50%, 10%, 1%, and 0.1%
contours relative to the peak intensity. The pixel scale is 0.0128 arcsec pixel~!. The original version
of this PSF was kindly provided by John Krist at the Space Telescope Science Institute (STScI).
The right side of Fig. 4 shows the MATPHOT-based analysis of 10,000 simulated NGST V-band
CCD observations of stars with true flux values between 250 and 10° electrons (photons). Each
observation was simulated with a 2x2 supersampled NGST PSF located near the center of 60x60
pixels on a flat background of 100 electrons (e~) with a CCD readout noise level of 3 e~ pixel ~*.
The results are plotted using box-and-whisker plots to better display the statistical range of recov-
ered values for photometry and astrometry. Figure 5 shows similar results for simulated 6.5-m
James Webb Space Telescope (JWST) observations with a perfect one-micron PSF (shown with a
log stretch to better display the higher spatial frequencies).

6.5—-m JWST 1-micron perfect (PSF:2x2)
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Figure 5. MATPHOT analysis of 10,000 simulated JWST stellar observations.
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A major result of this AISR grant has been the development of a theoretical photometric
and astrometric performance model for PSF-fitting stellar photometry and astrometry;
the PI has demonstrated that his MATPHOT algorithm achieves the Cramér-Rao Lower Bounds
for stellar photometry and astrometry [24]. The PI has implemented a standalone version of his
MATPHOT algorithm in C as part of his AISR project and all of the source code and documentation
is available to the general space-science community at a dedicated web site at NOAO [12] and at
the AISRP Code Archive Server [1]. The solid curves in Figs. 4 and 5 show the predicted median
performance of the MATPHOT algorithm for these simulations; note that the actual median values
(central bars in the boxes) lie on top or very near the performance model prediction. The gray
bands in the above photometric (astrometric) error plots show the predicted outlier region for
2.30 (3.00) to 5.00 outliers (shown as points above the top whisker in Figs. 4 and 5). Note how
well the theoretical performance model agrees with the actual MATPHOT measurements — even
with these very complicated (simulated) space-based discrete PSFs.

Current infrared detector technology can produce imagers with non-uniform pixel response
functions. The left side of Figure 6 shows the non-uniform pixel response function of the Hubble
Space Telescope’s NIC3 camera with the F160W filter (centered at 1.6 microns) as determined
by Lauer [9]; white indicates an excess of 0.12 mag and black is a 0.09 mag deficit. The right
side of Fig. 6 shows the variation of measured brightness of a single star as observed in 136
separate dithered images of the HDF-S NICMOS field using the NIC3 camera with the F160W
filter (plotted as a function of subpixel distance of the center of the star from the center of the
pixel) [6]. Significant flux loss due to non-uniform intrapixel pixel response functions is clearly an
observational fact in some existing space-based astronomical cameras.

136 measures of the same star in HDF-8 NIC3 F1 B0W images
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Figure 6. HST NIC3 F160W Non-Uniform Pixel Response Function.

An experimental version of MATPHOT was created to simulate such an IR detector; a pixel
was split into 16 subpixels and all the subpixels in the first row and column were declared to be
gate structures with zero efficiency converting photons to electrons and the other nine subpixels
had 100% conversion efficiency. Note that only 56% of the total pixel area was optically active.
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Figure 7. MATPHOT experiment with a large intrapixel quantum efficiency variation.

Ten thousand CCD stellar observations of —13 mag stars (~2.512!% photons) were simulated

and analyzed with the experimental version of MATPHOT using a 4x4 supersampled version of
the simulated V-band NGST PSF described above.

The optically inactive gate structures of the pixel cause the observed number of electrons in
each stellar image to be significantly less than the number of photons which fell on the detector.
The total amount of loss was dependent on where the center of the star fell within the
central pixel of the stellar image. The left side of Figure 7 shows that stars centered in the
middle of the active area of a pixel suffered a ~40% loss (Am = 0.56 mag) while those centered on
gate structures lost up to 47% (Am = 0.69 mag) [24].

The mean observed stellar magnitude for these —13 mag stars was —12.3728 + 0.0359 mag. The
photometric performance model predicts an rms measurement error of 0.0036 mag for these bright
stars. With an average loss of 44% and an rms measurement error that is ten times larger than
expected from photon statistics, the observed stellar magnitudes were clearly neither precise or
accurate (left histogram on the right side of Fig. 7).

The mean measured stellar magnitude reported by the experimental version of MATPHOT was
—12.9998 + 0.0039 mag and the mean rms error estimated by the program was 0.00384 £ 0.00006
mag (right histogram on the right side of Fig. 7). The photometric performance of the experimental
version of MATPHOT is fully consistent with theoretical expectations — which were derived for
an ideal detector with no intrapixel QE variation.

The experimental version of MATPHOT was able to do an excellent job in recovering the
true stellar magnitude of the 10,000 —13 mag stars — despite being presented with a worst-case
scenario of undersampled observations with an ugly PSF imaged on an ugly detector with a very
large intrapixel QE variation[24].

Excellent stellar photometry and astrometry is possible with ugly PSF's imaged onto
ugly detectors as long as the image formation process within the detector is accurately
modeled by the photometric reduction code.
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ABSTRACT

The key features of the MATPHOT algorithm for precise and accurate stellar photometry and
astrometry using discrete point spread functions (PSFs) are described. A discrete PSF is a
sampled version of a continuous PSF, which describes the two-dimensional probability dis-
tribution of photons from a point source (star) just above the detector. The shape information
about the photon scattering pattern of a discrete PSF is typically encoded using a numeri-
cal table (matrix) or an FITS (Flexible Image Transport System) image file. Discrete PSFs
are shifted within an observational model using a 21-pixel-wide damped sinc function, and
position-partial derivatives are computed using a five-point numerical differentiation formula.
Precise and accurate stellar photometry and astrometry are achieved with undersampled CCD
(charge-coupled device) observations by using supersampled discrete PSFs that are sampled
two, three or more times more finely than the observational data. The precision and accuracy of
the MATPHOT algorithm is demonstrated by using the C-language MPD code to analyse simulated
CCD stellar observations; measured performance is compared with a theoretical performance
model. Detailed analysis of simulated Next Generation Space Telescope observations demon-
strate that millipixel relative astrometry and mmag photometric precision is achievable with
complicated space-based discrete PSFs.

Key words: methods: analytical — methods: numerical — methods: statistical — techniques:
image processing — techniques photometric — astrometry.

1 INTRODUCTION

A point spread function (PSF) is a continuous two-dimensional
probability-distribution function that describes the scattering pat-
tern of photons from a point source (star).

Encoding a PSF as a continuous mathematical function works
well for many ground-based astronomical observations due to the
significant blurring caused by turbulence in the Earth’s atmosphere
and dome/telescope seeing. Ground-based PSFs are typically char-
acterized by having a lot of power in their spatial-frequency distri-
butions at low spatial frequencies.

Space-based PSFs frequently have significant amounts of power
at higher spatial frequencies due to the lack of blurring caused by at-
mospheric turbulence. Adaptive optics can produce PSFs with char-
acteristics found in both uncorrected ground-based PSFs and space-
based PSFs: low-spatial-frequency features (e.g. broad haloes) are
frequently combined with high-spatial-frequency features (e.g. due
to segmented mirrors).

Some PSF-fitting stellar photometric reduction programs describe
the PSF as a combination of continuous mathematical functions and
a residual matrix that contains the difference between the mathe-
matical model of the PSF and an observed (true) PSF. This artificial

*E-mail: mighell @noao.edu
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breaking of the PSF into analytical and discrete components is not
without mathematical risk. Such residuals can have small features,
which are described with higher spatial frequencies than are present
in the actual observational data — a problem that can usually be mit-
igated by sampling residuals at higher spatial resolutions than the
observational data.

What if we dispose of the use of continuous mathematical func-
tions to model any part of the PSF and just use a matrix to describe
all of the PSF? Is precise and accurate stellar photometry and as-
trometry possible using matrix PSFs with oversampled stellar image
data? If that is possible, then what extra information, if any, is re-
quired in order to do precision photometric reductions with matrix
PSFs on undersampled data?

This article describes how precise and accurate stellar photome-
try may be obtained using PSFs encoded as a matrix. The follow-
ing section derives the theoretical performance limits of PSF-fitting
stellar photometry and astrometry. Some of the key features of the
MATPHOT algorithm are presented in Section 3. A demonstration
computer program, called MpD, based on the current implementa-
tion of the MATPHOT algorithm, is described in Section 4. Simulated
CCD (charge-coupled device) stellar observations are analysed with
MPD in Section 5 and the performance of the MATPHOT algorithm is
compared with theoretical expectations. Concluding remarks are
given in Section 6. An appendix explains box-and-whisker plots,
which are used extensively in this article.
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2 THEORETICAL PERFORMANCE LIMITS

2.1 Point response functions

A point response function (PRF), W, is the convolution of a PSE, ¢,
and a detector response function (DRF), A:

W =¢xA. (D

The PSF describes the two-dimensional distribution of photons from
a star just above the detector. Although stellar photons are dis-
tributed as a point source above the Earth’s atmosphere, a stellar
image becomes a two-dimensional distribution as the stellar pho-
tons are scattered by atmospheric turbulence. The blurred stellar
image is then further degraded by passage of the stellar photons
through the combined telescope and camera optical elements (such
as mirrors, lenses, apertures, etc.). The PSF is the convolution of
all these blurring effects on the original point-source stellar image.
The two-dimensional discrete (sampled) DRF describes how the
detector electronics convert stellar photons (y) to electrons (e™) —
including such effects as the diffusion of electrons within the de-
tector substrate or the reflection (absorption) of photons on (in) the
gate structures of the detector electronics.

The PSF is a two-dimensional probability-distribution function
describing the scattering pattern of a photon. The volume integral
of the PSF is 1: Vpsg = 1; photons, after all, have to be scattered
somewhere. It is important to note that since the angular extent of
a PSF can be quite large, the volume integral the PSF over any
given observation is frequently less than 1 due to the limited spatial
coverage of the observation.

The volume integral of a PRF is, by definition, 1 or less

+00 +00
Vz//dedy://(¢*A)dxdy<l, 2)

where a value of less than 1 indicates a loss of stellar photons dur-
ing the detection/conversion process within the detector. While the
quantum efficiency (QE) variations within a single detector are gen-
erally not a major problem with state-of-the-art CCDs, intrapixel QE
variations can be significant with some near-infrared detector tech-
nologies currently being used in astronomical cameras (e.g. Lauer
1999; Hook & Fruchter 2000).

A perfect DRF gives a PRF that is a sampled version of the PSF

x;+0.5 yi+0.5
v, = / ¢(x, y)dx dy, 3)

i—0.5 Jy;—05

where the ith pixel of the PRF located at (x;, y;) is the volume integral
of the PSF over the area of the ith pixel. The actual limits of the above
volume integral reflect the appropriate mapping transformation of
the x and y coordinates onto the CCD pixel coordinate system.

The sharpness of a PRF is defined as the volume integral of the
square of the normalized PRF

- v
sharpness;//\llzdxdy E// <V) dx dy. 4)

Physically, sharpness is a shape parameter that describes the ‘poin-
tiness’ of a PRF; sharpness values range from a maximum of 1 (all
of the stellar flux is found within a single pixel) to a minimum of
0 (a flat stellar image). For example, cameras that are out of focus
have broad PSFs with sharpness values near zero. A normalized

Gaussian PSF with a standard deviation of S pixels,

1 ex e XY+ (y —Y)*
s O°P 257 :

g, i X, Y, 8) = (&)
that has been oversampled with a perfect DRF will have a sharpness
value of

+00
1
//gz(x,y;X,y,S) drdy = —. )

A critically sampled normalized Gaussian PRF has a sharpness of
1/(47t) and any PRF with a sharpness value greater than that value
(~0.0796) can be described as being undersampled. Diffraction-
limited optics, theoretically, give sharpness values that decrease (i.e.
PSFs become flatter) with increasing photon wavelength — for a
fixed pixel (detector) size. With real astronomical cameras, the value
of sharpness frequently depends on where the centre of a star is
located within the central pixel of the stellar image. For example,
the Hubble Space Telescope (HST) WFPC2 Planetary Camera PRF
at a wavelength of 200 nm has an observed sharpness value of 0.084
if the PRF is centred in the middle of a PC pixel or 0.063 if the
PRF is centered on a pixel corner (table 6.5 of Biretta et al. 2001);
at 600 nm the observed sharpness values range from 0.066 (pixel
centred) to 0.054 (corner centered). The wide-field cameras of the
HST WFPC?2 instrument have pixels that are approximately half the
angular resolution of the PC camera pixels; stellar images on the WF
cameras are undersampled and the observed range of WF camera
sharpness values are 0.102—0.120 at 200 nm and 0.098-0.128 at 600
nm.

The effective background area, (3, of a PRF is defined as the
reciprocal of the volume integral of the square of the PRF

1

+00 -
8= //\Ilzdxdy . )

Alternatively, the effective background area (a.k.a. equivalent noise
area or effective solid angle) of a PRF is equal to the reciprocal of
the product of its sharpness and the square of its volume

-1

+00
=\2 1
= VW) dxdy| = —0———. 8
p //( ) A V2 sharpness ®)

The effective background area of a normalized Gaussian PRF is
47tS? px?, where S is the standard deviation in pixels (‘px’); a
critically sampled normalized Gaussian PRF has an effective back-
ground area of 47t & 12.57 px. King (1983) notes that numerical
integration of a realistic ground-based stellar profile gives an effec-
tive background area of 30.8S? instead of the value of 47t S? for a
normalized Gaussian profile.

2.2 Basic least-squares fitting theory

Consider a CCD observation of two overlapping stellar images. As-
suming that we already know the PSF and the DRF of the observa-
tion, a simple model of the observation will have seven parameters:
two stellar intensities! (£}, &) in electrons, four coordinate values,

! Stellar intensity is defined to be the total number of electrons from a single
star scaled to a PRF volume integral of 1. The observed stellar intensity
(= £V) is, by definition, always less than or equal to the measured stellar
intensity (= £).
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giving the stellar positions (X, Vi, X», )%) in pixels, and B, which
is the observed background sky level® in electrons (which is assumed
to be the same for both stars). These observational parameters are
not independent for overlapping stars in the presence of photon and
CCD readout noise. The conservation of electron flux will require
that if £, increases then £ must decrease and vice versa for a given
value of B. The most accurate photometry possible is obtained when
these dependent parameters are fitted simultaneously. Any reason-
able model of two overlapping stellar images will be a non-linear
function when the positions and intensities are to be determined si-
multaneously. The technique of non-linear least-squares fitting was
developed to provide for the simultaneous determination of depen-
dent or independent parameters of non-linear model functions.

Assume that we have a calibrated CCD observation with N pixels
and that z; is the number of electrons in the ith pixel, which is
located at the position of (x;, y;), and has a measurement error of
o; electrons. Let m(x, y; p1, ..., pu) be an observational model of
the CCD electron pixel values that has two coordinates (x, y) and
M parameters. For notational convenience, let the vector r; represent
the coordinates (x;, ;) of the ith pixel and the vector p represent all
the model parameters [p = (py, - - -, pu) ]. The observational model
of the ith pixel can thus be compactly written as m; = m(r;;p).

The measure of the goodness of fit between the data and the
model, called chi square, is defined as

N
=S (z—m). ©)
i
The theory of least-squares minimization states that the optimum
value of the parameter vector p is obtained when x >(p) is minimized
with respect to each parameter simultaneously. If p, is the optimal
parameter vector, then x2(pg) is the absolute minimum of the M-
dimensional manifold x2(p).
For some small correction parameter vector §, one can approxi-
mate x2(p + 8) by its Taylor series expansion as follows:

oo

1
X +6) = 69X
n=0
~xXp)+6-Vx*(p)+16-H-6, (10)
where
X (p)
(Hlje = da;day
- {3#(1))} [axz(p)] (11
da; day

is the jkth element of the M x M Hessian matrix H of x%(p) [e.g.
Arfken (1970); Press et al. (1986)]. The approximation for the cal-
culation of the Hessian matrix elements is frequently used whenever
the computation of the second partial derivative is numerically un-
stable. If x2(p +86) is a local minimum of x? manifold, then it can
be shown that

H.-6 = —Vy(p). (12)

By solving this equation for the correction vector é, one can de-
termine a better parameter vector p’ =p +6. When the parameter
vector (p) is redefined to be the better parameter (p’), the Hessian

2 The observed background sky level (in electrons) is the product of true
background sky level (in photons) and the average PRF volume across a
pixel: B = By (V).
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matrix and the gradient of x2(p) can then be recalculated to de-
termine a new correction vector (6). This process repeats until the
correction vector is sufficiently small — generally when the differ-
ence between the solutions is no longer statistically significant. If
the fitting process has not failed, then the optimal parameter vector
(po) should be very close to the true parameter vector.

Once the optimal parameter vector has been determined, the co-
variance matrix C may then be calculated by inverting the Hessian
matrix H computed with the optimal parameter vector. The stan-
dard errors (one standard deviation) of the fitted parameters can be
estimated as follows:

Yy fam ]
o; ~ \/ICT;; = [Z; (;7) ] : (13)
i J

i=1

where o ; is the standard error associated with the jth parameter (p;).
Usage of equation (13) for error estimates is based on the critical
assumption that fitted model parameters are independent (indicated
by negligibly small off-diagonal elements of the covariance ma-
trix). It is important to note that whenever this critical assumption is
violated, the results produced by least-squares fitting may not be sta-
tistically reliable, which is to say, they may no longer be physically
meaningful.

2.3 Photometry

The theoretical photometric performance limits for PSF-fitting CCD
stellar photometry can be derived using a simple observational
model consisting of a PRF and a constant sky level.

2.3.1 Observational model

Consider a CCD observation of a single isolated star on a flat sky
background. Assuming that one already knows the PRF of the obser-
vation at the location of the star, a simple model of the observation
would have just two parameters: the stellar intensity (£) in elec-
trons, and the observed background sky level (B) in electrons. The
observational model for the ith pixel would be

m; =B+ EVY, (14)

where V is the volume integral of the PRF and \J; is the value of the
ith pixel of the normalized PRF (U; = ¥;/V ).

2.3.2 Bright star limit

In the case of bright stars, most of the electrons found in the
ith pixel of the observation will come from the star and not the
sky

The actual number of electrons found in the ith pixel will be de-
scribed by a Poisson distribution with a mean and variance of m;.
The measurement error (one standard deviation) for the ith pixel
would thus be

o; = /m;
~ A\ EV,. (16)

All other noise sources (due to, e.g. the observed background sky,
instrumental readout noise, flat-field calibrations errors, etc.) are
assumed, in this special case, to be negligibly small.
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The variance of the stellar intensity measurement error of bright
stars can be estimated using equations (13), (14) and (16) as follows:

[ng—q, (%gv@,.)zl

i=1

+00
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v //‘-I‘dxdy

< (17)
=

-1

2
O¢:bright ~>

—1

%

as expected from photon statistics.

A bright isolated star with an intensity of 10 photons im-
aged with a perfect CCD detector would have a stellar image
with 10°e~(= &) and a stellar intensity measurement error of
oe ~ JEJ(V=I) = 10° e”. The same star imaged with an in-
efficient CCD detector with a QE of 25 per cent (V = 1/4) would
have a stellar image with ~250 000 e, which would have a Poisson
noise error of ~500 e~. The measured stellar intensity is £ ~ 10° e~
with an rms measurement error of og ~ /£/V = 2000 e~, which
is two times larger than it would be with a perfect detector and four
times larger than the Poisson noise error of the observed number of
electrons.

Solving for measured stellar intensity (= £) instead of the ob-
served stellar intensity (= £V) enables the creation of stellar pho-
tometric reduction programs capable of dealing with intrapixel QE
variations through the accurate modelling of the image-formation
process within the detector. While it is certainly convenient to as-
sume that one’s detector has negligible intrapixel QE variation, in
the real world even NASA-grade CCD detectors, like those found
in the HST WFPC2 instrument, can have peak-to-peak intrapixel
sensitivity variations greater than 0.02 mag (>2 per cent) (see figs 5
and 6 of Lauer 1999).

2.3.3 Faint star limit

Most of the electrons found in the ith pixel of an observation of a
faint isolated star on a flat sky background will come from the sky
and not from the star. In that case, the measurement error associated
with the ith pixel is approximately the effective background noise
level

0; ~ Oms, (18)

where

19)

Omms =

~ /B + oions (20)

B is the constant observed background sky level, which is assumed
to be a Poisson distribution with a mean of B electrons, and o gon
is the rms readout noise.

The variance of the stellar intensity measurement error of faint
stars can be estimated using equations (13), (14), (18)—(20) and (8)

as follows:
N 9 27!
2 ~ R — \7 .
O¢: faint ™~ [Z O_rzrm (aggvlpz> ]
i=1 :
400 -1
O-r%ns T2
~ Y2 // W= dx dy
= B0, @1
~ BB+ opon] - (22)

where (3 is the effective background area of the PRF. Equation (22)
agrees with equation (9) of King (1983) for a perfect (V = 1) noise-
less (o ron = 0 €7) detector.

An important additional noise source for the photometry of faint
stars is the systematic error due to the uncertainty of the measure-
ment of the background. If the sky background is assumed to be flat,
then the rms measurement error of the constant sky background can
be estimated using equations (13), (14), (18)—(20) as follows:

(23)

~ B+—01%0N (24)
A/ N .

Given a CCD observation with no readout noise, equation (24) re-
duces to the value of o5 = +/B/N expected from simple sampling
statistics.

The portion of the rms stellar intensity measurement error that
is caused by the error in the determination of the local sky level is
o B (Irwin 1985). While this error is frequently negligible for bright
stars, it is generally significant for faint stars. Including the uncer-
tainty in the determination of the constant observed background sky
level thus gives a more realistic estimate for the rms stellar intensity
measurement error for faint stars as follows:

O faint ~ V ,Bdl,%ns + /6(78

~ Vﬁ(l + \/ﬂ/N> VB + oox. (26)

Precise and accurate stellar photometry of faint stars requires an ex-
cellent determination of the observed background sky which, in turn
requires accurate background sky models. Given a valid background
sky model, small apertures will be more sensitive to background sky
measurement errors than large apertures.

2.3.4 Photometric performance model

A realistic photometric performance model for CCD PSF-fitting
photometry can be created by combining the bright and faint star
limits developed above. The theoretical upper limit for the photo-
metric signal-to-noise ratio (S/N) of CCD PSF-fitting photometric
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algorithms is as follows:

&
S/N= —
O¢
N &
V Gg:brighl + Gé:fainl
~ £ 27
& 2,
V+16(1+ IB/N) Orms
&
~ . (28)

g 2
\/V+,8<1+ ,B/N) B+ 0lou]

These approximations assume, for the sake of simplicity, that any
noise contribution due to dark current and quantization noise is neg-
ligible. While these additional noise sources can be added to create
an even more realistic performance model for stellar photometry, the
assumption of low dark current and minimal quantization noise is
realistic for state-of-the-art astronomical-grade CCD imagers. The
resulting photometric error is approximately

Amag ~ ———, (29)

where the constant 1.0857 is an approximation for Pogson’s ratio
a =5/In (100) = 2.5 log (e) (Pogson 1856).

2.3.5 Cramér—Rao lower bound

The Cramér—Rao lower bound (CRLB) is the lower bound on the
variance of any unbiased estimator. Since it is physically impossi-
ble to find an unbiased estimator that beats the CRLB, the CRLB
provides a performance benchmark against which any unbiased es-
timator can be compared.

The CRLB for stellar photometry of a single isolated star imaged
by a two-dimensional photon-counting detector has been derived
several times in the astrophysical literature (see, e.g. appendix A of
Perrymanetal. 1989; Irwin 1985; King 1983). The generalization for
acrowded field with overlapping stellar images is given in Jakobsen,
Greenfield & Jedrzejewski (1992).

The CRLB for the bright star limit of stellar photometry of a
single isolated star is

G;:bright-CRLB =¢, (30)

which is equation (17) with a perfect detector. The CRLB for the
faint star limit of stellar photometry of a single isolated star is

Oézfainl-CRLB =8B, (€28

which is equation (26) with a noiseless detector and a negligible
background measurement error (N — 00).

The photometric performance model has bright and faint star
limits, which are the same, respectively, as the bright and faint star
CRLBs for stellar photometry of a single isolated star on a flat sky
background imaged with a perfect noiseless detector.

2.4 Astrometry

The theoretical astrometric limits for PSF-fitting CCD stellar pho-
tometry can be derived using a simple observational model consist-
ing of a Gaussian PRF and a constant sky level.
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2.4.1 Observational model

Consider a CCD observation of a single isolated star on a flat
sky background. A Gaussian is a good model for the PSF of
a ground-based CCD observation since the central core of a
ground-based stellar profile is approximately Gaussian (King 1971).
In this case the PSF would have three parameters: two coordi-
nate values giving the location (X, )) of the star on the CCD
and the standard deviation of the Gaussian (S) in pixels [see
equation (5)].

An imperfect but uniformly flat DRF (V < 1) gives a value for the
ith pixel of the PRF located at (x;, y;), which is equal to the product
of the volume of the PRF and the value of the volume integral of
the PSF over the area of the ith pixel

x;4+0.5  pyi+0.5
G, = V/ gx,y; X, Y, S)dxdy. (32)

=05 Jy—05

The actual limits of the above volume integral reflect the appropriate
mapping transformation of the x and y coordinates onto the CCD
pixel coordinate system.

If the PRF has been oversampled, the value of the ith pixel of the
PRF is approximately equal to the product of the volume of the PRF
and the value of the PSF at the center of the ith pixel

G ~Vg, (33)
where
g =g,y X, ¥,8). (34

A simple model of the observation will require two additional
parameters: the stellar intensity (£) and the observed background
sky level (B) in electrons. The ith pixel of the observational model
would be

m; =B+ EVG;, (35)

where V is the volume integral of the PRF and G, is the value of the
ith pixel of the normalized PRF (G; = G;/V ~ g;).

2.4.2 Bright star limit

In the case of bright stars, most of the electrons found in the
ith pixel of the observation will come from the star and not the
sky

The actual number of electrons found in the ith pixel will be de-
scribed by a Poisson distribution with a mean and variance of m;.
The measurement error (one standard deviation) for the ith pixel
would thus be

o; = ’\/Wl
~\EVG;.

All other noise sources (e.g. the observed background sky, instru-
mental readout noise, flat-field calibrations errors, etc.) are assumed
to be negligibly small.

The variance of the stellar X position measurement error
of a bright isolated oversampled star can be estimated using

(37)
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equations (13), (35), (37), and (5) as follows:
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(38)

where

[BV? 1
L= B = (39)
47t /47t sharpness

is the critical-sampling scalelength of the PRF? in pixel units (px),
which, unlike S, is defined for all PRFs. By definition, the critical-
sampling scalelength of a critically sampled PRF imaged with a
perfectdetectoris 1 px. £ > 1 indicates that the PRF is oversampled,
while £ < 1 indicates that the PRF is undersampled.

In the special case of a critically sampled bright star imaged
with a perfect detector, one finds that the astrometric performance
limit (in pixel units) is equal to the reciprocal of photometric error
performance limit

1
O X:bright ~ \/g ~

O&: bright

2.4.3 Faint star limit

Let us again assume that the noise contribution from the star is
negligibly small and that the variance of the measurement error of
the ith pixel can be replaced with an average constant rms value.
The variance of the stellar X’ position measurement error of a faint
isolated oversampled star can be estimated using equations (13),
(35), (18)—(20), and (5) as follows:
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3 From the definition of the effective background area of an oversampled
Gaussian PRF with V < 1, Bg = 47tS?/V?2, one sees that critical-sampling
scalelength has been designed to be a proxy for for any PRF.

~ 87t (B + U]%ON) (ch':brigh[)z . (41)

2.4.4 Astrometric performance model

A realistic performance model for CCD PSF-fitting astrometry can
be created by combining the bright and faint star limits developed
above. The expected lower limit of the rms measurement error for
the stellar X" position for a single isolated star on a flat sky can be
estimated as follows:

[ 2 2
Ox /0% bright T OXx: faint

C2 L2
SO i PIVIY P 42
\/sv { + m‘"“sv} “2)

L2 L2
%\/ﬁ {1+8n(B+G§ON)W]. (43)

The rms stellar ) position measurement error is, by symmetry, the
same as for X

Oy =0x. (44)

2.4.5 Photonic limit and the Cramér—Rao lower bound

The CRLB for stellar astrometry depends not only on the signal-
to-noise ratio, but also on the size and shape of the detector. For
well-sampled data, the size and shape of the detector can be ignored
and a CRLB can be found for a perfect noiseless detector with
infinitely small pixels. This is called the photonic limit.

The determination of the CRLB for astrometry becomes much
more complicated with undersampled observations. Astrometric
precision degrades when the size of the detector is comparable to
the size of the stellar image — the quality of the position estimation
is then dependent on the fraction of photons falling outside of the
central pixel. The worst-case scenario for stellar astrometry occurs
when all the light from a star falls within a single pixel: all one
knows for sure, in that unfortunate case, is that the star is located
somewhere within the central (and only) pixel.

The photonic limit (PL) for stellar astrometry of a bright well-
sampled single isolated normalized Gaussian star is

2 _ s
Tx:bright-PL = ¢
(Irwin 1985). Using £ as a proxy for S, one has the generalized
form for any PSF:
£2
Oy bright PL ~ & (45)
which is equation (38) with a perfect detector.

The photonic limit for stellar astrometry of a faint well-sampled

single isolated normalized Gaussian star is (Irwin 1985)

) 8n B S*
Ox:faint-PL = — g2 -
Using £ as a proxy for S, one has the generalized form for any PSF

8B LY
2 ~
Ox.faint-PL ~ g2 (46)

which is equation (41) with a perfect noiseless detector.
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The astrometric performance model has bright and faint star lim-
its that are the same, respectively, as the bright and faint star pho-
tonic astrometric limits, which are the CRLBs for stellar astrom-
etry of a single isolated Gaussian star on a flat sky background
imaged with a perfect noiseless detector with infinitely small pix-
els. The CRLBs for stellar astrometry of a single isolated Gaussian
star on a flat sky background imaged with a perfect noiseless CCD
with square pixels (Winick 1986) quickly approaches the photonic
limits with well-sampled observations; undersampled observations
will have larger astrometric errors than predicted by the photonic
limits.

2.5 Relation between astrometric and photometric errors

2.5.1 Bright star limit

Following King (1983) and Irwin (1985), we can now compare the
astrometric error of bright isolated stars with their photometric error.
The ratio of the astrometric error of a bright isolated star and the
critical-sampling scalelength of the PRF is equal to the ratio of the
stellar intensity measurement error and the stellar intensity
Ox og
L&

For example, a bright isolated critically sampled star with one mil-
lion electrons imaged on a perfect detector (£ = 10°e~, V =1
and £ =1 px) would, theoretically, have a signal-to-noise ratio of
S/N=1000, a stellar intensity measurement error of g = 1000 e~
and an rms position error in x of one-thousandth of a pixel (ox =
0.001 px). Such astrometric accuracy may be difficult to achieve in
practice under normal ground-based observing conditions even with
state-of-the-art astronomical-grade CCD cameras.

47

2.5.2 Faint star limit

The astrometric error of faint isolated stars is related to their photo-
metric error as follows:

ox _[oe V2
()

For example, a faint isolated critically sampled star imaged with
a perfect detector with a 20 per cent intensity measurement er-
ror and a negligible background measurement error (N — 00)
would, theoretically, have an astrometric error of ~0.283[~(0.200)

V2] px.

2.5.3 Practical lower bound

These results suggest the following practical lower bound for astro-
metric errors with respect to photometric errors:

X per cent photometry gives no better than X per cent astrometry
with respect to the critical-sampling scalelength (£).

For example, a star with 1 per cent stellar photometry will have no
better than 1 per cent astrometry with respect to the critical-sampling
scalelength. If the star is critically sampled, then the astrometric
precision will be no better than 0.01 px.

All of the above derivations are based on the assumption that
that flat-field calibration errors are negligible. The relation between
photometry and astrometry for bright isolated stars can fail with
large flat-field calibration errors.
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3 DISCRETE POINT SPREAD FUNCTIONS

A discrete PSFis asampled version of a continuous two-dimensional
PSF. The shape information about the photon scattering pattern of
a discrete PSF is typically encoded using a numerical table (ma-
trix). An analytical PSF has the shape information encoded with
continuous two-dimensional mathematical functions.

In order to do accurate stellar photometry and astrometry with
discrete PSFs one needs to be able to (i) accurately shift discrete
PSFs to new positions within the observational model, and (ii) com-
pute the position-partial derivatives of discrete PSFs. The next two
subsections describe how these tasks may be accomplished using
numerical analysis techniques.

3.1 Moving discrete PSFs

Building a realistic observation model requires the placement of a
star at the desired location within the model; this is done by deter-
mining the PRF at the required location, and then multiplying it by
the stellar intensity. With PSFs encoded by mathematical functions,
one just computes the PSF at the desired location in the observa-
tional model. With discrete PSFs, one ideally takes a reference PSF
(typically derived/computed for the center of a pixel) and shifts it
to the desired location using a perfect two-dimensional interpola-
tion function. But, how is this done in practice? The sinc function,
sin(7tx)/(7tx), is, theoretically, a perfect two-dimensional interpola-
tion function. Unfortunately, the sinc function decays with 1/x and
never actually reaches zero. One can use a windowed interpolant in
order to improve computational speed — but one must be cautious
about aliasing effects caused by using a windowed function. In the
case of stellar photometry and astrometry, aliasing effects will gen-
erally only be seen with bright stars since a large number of photons
are required to adequately sample the higher spatial frequencies of
the PSF.

The following 21-px-wide damped sinc function interpolant does
an excellent job interpolating discrete PSF (Mighell 2002) :

fshifted(x )

sin (7t(x; — X)) xi —x0\?
—Zf( D G =%y P P( 3.25 )} )

i=—10

Note that since the two-dimensional sinc function is separable in
x and y, this interpolant can be coded to be computationally fast
and efficient. This interpolant, from the ZODIAC C library written by
Marc Buie of Lowell Observatory, was specifically designed for use
with 32-bit floating numbers.

Aliasing problems due to critically sampled or undersampled data
may be overcome by using discrete PSFs that are supersampled at
two, three or more times more finely than the observational data. In
order to have a realistic observational model, once the supersampled
discrete PSF has been interpolated to the correct position, a new
degraded (rebinned) version of the discrete PSF must be created
that has the same spatial resolution as the observational data.

3.2 Position-partial derivatives of discrete PSFs

While the mathematics of determining the position-partial deriva-
tives of individual stars within the observational model with respect
to the x and y direction vectors is the same regardless of how the
shape information in a PSF is encoded, the implementation method-
ology for the computation of position-partial derivatives of discrete
PSFs is very different than the one used for analytical PSFs.
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The position-partial derivatives of discrete PSFs can be deter-
mined using numerical differentiation techniques on the discrete
PSF.

It is a standard practice in numerical analysis to approximate the
first, second or higher, derivatives of a tabulated function f(x;) with
multipoint formulae. Abramowitz & Stegun (1964) give 18 difterent
multipoint formulae, which can be used (with varying degrees of
accuracy) to approximate the first derivative of the tabulated function
f(x). The following five-point differentiation formula (Abramowitz
& Stegun 1964, p. 914),

1
flx) ~ I [f(xica) = 8 f(xicy) 4+ 8 f(xig1) — f(xig2)],  (50)

works well with discrete PSFs (Mighell 2002). This approximation
takes just four additions and three multiplications, which generally
makes it considerably faster to compute than the traditional deter-
mination of the partial derivative of the volume integral of the PSF
above a CCD pixel.

4 THE mATPHOT ALGORITHM

The concepts presented above outline the unique and fundamental
features of the MATPHOT algorithm for accurate and precise stellar
photometry using discrete PSFs.

While the key features of a CCD stellar photometric reduction
algorithm can be described in an article, the full implementation of
such an algorithm generally exists as a complex computer program
consisting of many thousands of lines of computer code. Since good
algorithms can be poorly implemented, it can be difficult to differen-
tiate between a poor algorithm and a poorly coded implementation
of a good algorithm.

Confidence in a complex algorithm can be established by de-
veloping an implementation of the algorithm that meets theoreti-
cal performance expectations. The following subsection describes
a real-world implementation of the MATPHOT algorithm that meets
the theoretical performance expectations for accurate and precise
stellar photometry and astrometry, which are derived in Section 2.

4.1 MpD: MATPHOT Demonstrator

I have written a c-language computer program, called MpD,* which
is based on the current implementation of the MATPHOT algorithm
for precise and accurate stellar photometry using discrete PSFs.
The MPD code demonstrates the precision and accuracy of the MAT-
PHOT algorithm by analysing simulated CCD observations based
on user-provided discrete PSFs encoded as FITS (Flexible Image
Transport System) images (Wells, Greisen & Harten 1981). Discrete
PSFs are shifted within the observational model using the 21-px-
wide damped sinc interpolation function given in equation (49).
Position-partial derivatives of discrete PSFs are computed using
the five-point differentiation formula given in equation (50). Accu-
rate and precise stellar photometry and astrometry of undersampled
CCD observations can be obtained with the MPD code when it is
presented with supersampled discrete PSFs that are sampled two,
three or more times more finely than the observational data. The

4 All source code and documentation for MPD and support software are
freely available at the official MATPHOT website at NOAO: http://www.
noao.edu/staff/mighell/matphot

MPD code is based on a robust implementation of the Levenberg—
Marquardt method of non-linear least-squares minimization (Lev-
enberg 1944; Marquardt 1963, also Mighell 1989). When presented
with simulated observations based on a Gaussian PSF with a known
FWHM (full width at half maximum) value,’ the MPD code can
analyse the observation in two different ways: (i) the MATPHOT al-
gorithm can be used with a discrete Gaussian PSF, or (ii) analytical
techniques (Mighell 1989, 1999) can be used with an analytical
Gaussian PSF.

5 SIMULATED OBSERVATIONS

5.1 Oversampled PSFs

I now demonstrate that the theoretical performance limits of Sec-
tion 2 provide practical performance metrics for photometry and
astrometry of CCD stellar observations that are analysed with over-
sampled Gaussian PSFs.

5.1.1 Analytical PSFs

20000 oversampled CCD stellar observations were simulated and
analysed using the MPD code. The CCD detector was assumed to be
perfect (V = 1) witha CCD readout noise value of o gox =3 €~ px 1.
Stars were simulated using an analytical Gaussian PSF with a
FWHM = 3 px located near the center of 60 x 60 px, the input stellar
intensities ranged from —6 to —15 mag® (251 < Ege <10°¢7), and
a flat background was assumed with a value of B = 100 e~. Pho-
ton and readout noise were simulated, respectively, using Poisson
and Gaussian random noise generators, and the resulting observed
background sky measurement error was o = 0.18 e~. The median
effective background area of the PRF of these observations was 3 =
21.44 px>. All the simulated observations were analysed with MPD
using an analytical Gaussian PSF with FWHM = 3.0 px.

The binned absolute photometric errors are shown as black box-
and-whiskers plots (see Appendix A) in the top panel of Fig. 1. The
absolute photometric error of an observation is the absolute value of
the difference between the measured (estimated) and true (actual)
stellar magnitude: Amag = |mag — mag.e|. The four grey limits
seen in the top panel of Fig. 1 are theoretical predictions (derived
from Section 2.3.4) for the median (50 per cent cumulative fraction:
grey solid curve), top hinge (75 per cent: bottom of the grey band),
top fence (~98.35 per cent: top of band), and So outlier (~99.99997
per cent: grey dashed curve) values. If the rms photometric error is
called 0 e, then the values of these theoretical limits are approxi-
mately equal t0 0.674 0 1mag, 1.151 0 1nag, 2.398 0y and 5.423 0 g,
respectively. If the photometric performance model is correct and
MPD has been coded correctly, then (i) the observed median values
(central bar in each box) should intersect the theoretical median
value, (ii) most of the top whiskers should be found inside the band
and (iii) most of the outliers should be found above the top of the
band and all of the outliers should found below the 5o outlier limit.

Comparing the absolute photometric errors of the 20 000 simu-
lated CCD observations with the grey theoretical limits, one sees that
the photometric performance of the MPD code is very well predicted
by the model given in Section 2.3.4

3> The FWHM value of a Gaussian is equal to 2/In(4) times the standard
deviation, S, of the Gaussian: FWHM ~ 2.35482 S (see equation 5).

6 The MATPHOT magnitude system assumes that 0 mag = 1e~ (electron) =
1y (photon) for a PRF volume of one (V = 1).

© 2005 RAS, MNRAS 361, 861-878
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Figure 1. The absolute photometric errors (top) and total astrometric errors
(bottom) of 20000 simulated CCD stellar observations analysed with MPD
using an oversampled analytical Gaussian PSF with a FWHM of 3.0 px
(B~2144px*, V =1).

The binned total astrometric errors are shown as black box-
and-whiskers plots in the bottom panel of Fig. 1. The total as-
trometric error of an observation is the distance between the
measured (estimated) and true (actual) position of a star: Ar =
\/ (X — Xiue)* +(YV — Vire)?. The four grey limits seen in the
bottom panel of Fig. 1 are theoretical predictions (derived from
Section 2.4.4) for the median (50 per cent cumulative fraction: grey
solid curve), top hinge (75 per cent: bottom of the grey band), top
fence (~98.97 per cent: top of band), and 5o outlier (99.99997 per
cent: grey dashed curve) values. The values of these theoretical lim-
its are approximately equal to 1.178 ox, 1.666 0y, 3.027 0x and
5.890 o, where o is the rms measurement error for the stellar X’
position. If the astrometric performance model is correct and MPD
has been coded correctly, then (i) the observed median values should
intersect the theoretical median value, (ii) most of the top whiskers
should be found inside the band and (iii) most of the outliers should
be found above the top of the band and all of the outliers should
found below the 5o outlier limit.

Comparing the total astrometric errors of the 20000 simulated
CCD observations with the grey theoretical limits, one sees that the
astrometric performance of the MPD code is very well predicted by
the model given in Section 2.4.4

Fig. 2 shows the relative stellar intensity errors and the relative
X position errors of the 20 000 stars analysed in Fig. 1. The rela-
tive stellar intensity error is the difference between the measured
(estimated) and true (actual) stellar intensity values divided by the
estimated stellar intensity error: AE = (€ — Eye)/0e. The relative
X position error is the difference between the measured (estimated)
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Figure 2. Relative stellar intensity errors (top) and relative X position
errors (bottom) of the data set used in Fig. 1.

and true (actual) stellar X" position values divided by the estimated
X error: AX = (X — Xlwe)/0x. If MPD has been coded correctly,
the relative error distributions for the stellar parameters £, X and
Y should be normally distributed. The five grey limits seen in each
panel are theoretical predictions (based on the normal distribution)
for, from bottom to top, the bottom fence (~0.35 per cent cumu-
lative fraction: bottom of the bottom grey band), bottom hinge (25
per cent: top of bottom band), median (50 per cent: grey solid line
at zero), top hinge (75 per cent: bottom of top band), top fence
(~99.65 per cent: top of top band) values. If the relative errors for £
and & are indeed normally distributed, then (i) the observed median
values should be near zero, (ii) most of the whiskers should be found
inside the bands, and (iii) most of the outliers should be beyond the
fence values.

Comparing the relative errors for £ and X of the 20 000 simulated
CCD observations with the grey theoretical limits, one sees that these
errors are, as expected, normally distributed.

The MPD code works well with oversampled analytical Gaussian
PSFs and its performance can be very well predicted with the pho-
tometric and astrometric models derived in Section 2.

5.1.2 Discrete PSFs

The 20000 simulated CCD observations analysed in Figs 1 and 2
were reanalysed with MPD using an oversampled discrete Gaussian
PSF with a FWHM of 3 px. Fig. 3 shows the resultant absolute
photometric errors and total astrometric errors. Fig. 4 shows the
resultant relative errors for £ and X'. Note how similar Figs 1 and 3
and Figs 2 and 4 are to each other.

Despite the very different way the shape information of the PSF
was encoded (i.e. discrete versus analytical representations), MPD
produced nearly identical photometric and astrometric results.

How similar are the measured stellar positions? Fig. 5 shows
the relative X and Y position differences between the previous an-
alytical and numerical analyses with the MPD code. The top panel
shows the difference between the numerical X result and the analyt-
ical & result divided by the estimated error of the analytical result.
Similarly, the bottom panel shows the difference between the numer-
ical Y result and the analytical ) result divided by the estimated error
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Figure 3. The absolute photometric errors (top) and total astrometric errors
(bottom) of 20 000 simulated CCD stellar observations used in Figs 1 and 2
were analysed with MPD using an oversampled discrete Gaussian PSF with
a FWHM of 3.0 px (8 ~ 21.44px>; V = 1).

of the analytical result. The relative differences between the numer-
ical and analytical methods are not normally distributed — observe
how much smaller the values on the ordinate of Fig. 5 are compared
to those of Figs 2 and 4. Figs 2 and 4 are normally distributed, and
the source of the scatter is photon noise. Fig. 5 indicates that the rel-
ative differences between the numerical and analytical methods for
astrometry are less than one-fifteenth of the difference due to pho-
ton noise. In other words, the computational noise due to the chosen
analysis method (numerical versus analytical) is insignificant when
compared to the unavoidable photon noise due to the random arrival
of photons in any astronomical CCD observation.

The MPD code works as well with oversampled discrete Gaussian
PSFs as it does with oversampled analytical Gaussian PSFs.

5.1.3 Inefficient detectors

While the volume, V, of the PRF was carefully tracked through-
out the derivation of the photometric and astrometric performance
models in Section 2, all previous simulations have assumed a per-
fect detector (V = 1). Let us now check to see if the effects of a
PRF volume integral that is less than 1 has been correctly accounted
for in the performance models of Section 2 by analysing simulated
observations imaged on a very inefficient detector (V < 1).
20000 oversampled CCD stellar observations were simulated
assuming a very inefficient detector with V = 1/9. Stars were
simulated using a discrete Gaussian PSF with a FWHM = 3 px
located near the center of 60 x 60 px, the input stellar inten-
sities ranged from —8 to —15 mag (1585 to 10° y); and the
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Figure 4. Relative stellar intensity errors (top) and relative X position
errors (bottom) of the data set used in Fig. 3.
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Figure 5. Relative X and ) position differences (top and bottom, respec-
tively) between the numerical (subscript N) and analytical (subscript A)
results of the same 20 000 stars used in Figs 1-4.

observed background sky level was assumed to be a constant value
of B=11.1111 e~ By, = 100y, (V) = 1/9), all other simulation
parameters were the same as before.

All the simulated observations were analysed with MPD in the
same way as described for the numerical experiment shown in Fig. 3
— except that the volume of the PRF was set to V = 1/9 in or-
der to simulate the use of an inefficient detector that converts only
~11.1 per cent of photons to electrons.

Fig. 6 shows the absolute photometric errors and total astromet-
ric errors of this numerical experiment. The median effective back-
ground area of PRF of these observations was 3 &~ 1736.79 px>,
which is, as expected, 81 (= V~?) times larger than the median
value reported in Fig. 3.

Comparing the simulation results with the grey theoretical lim-
its, one sees that the photometric and astrometric performance of

© 2005 RAS, MNRAS 361, 861-878
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Figure 6. The absolute photometric errors (top) and total astrometric errors
(bottom) of 20000 simulated CCD stellar observations analysed with MPD
using a discrete Gaussian PSF with a FWHM of 3.0 px with an inefficient
detector with V = 1/9 (3 & 1736.79 px?). See the text for more details.

the MPD code is very well predicted by the theoretical performance
models given in Section 2.

The black dash—dot curves in each panel of Fig. 6 shows the ex-
pected median response with a perfect detector; these curves are the
same as the solid grey median curves found in Fig. 3. The observed
stellar intensities and observed background sky level are nine times
fainter than was seen in the numerical experiment shown in Fig. 3
and the median photometric and astrometric errors in Fig. 6 are, as
expected, ~3 (= V~!/?) times larger when the inefficient detector
is used.

The MPD code and the theoretical performance models work well
with PRFs that have volumes of less than 1.

5.2 Undersampled discrete PSFs

20000 undersampled CCD stellar observations were simulated us-
ing an analytical Gaussian with a FWHM = 1.5 px, the other sim-
ulation parameters were the same as given in Section 5.1.1. The
median effective background area of PRF of these observations
was B ~ 6.12px? (V = 1). All the simulated observations were
analysed with MPD using a discrete Gaussian PSF with FWHM =
1.5px.

Fig. 7 shows the absolute photometric errors and total astromet-
ric errors of this numerical experiment. While the photometric and
astrometric results for stars with &, <300000e™ are fine, the re-
sults for stars brighter than this limit are seen to quickly degrade in
accuracy with the brightest stars having median errors that are ~40
times worse than expected.
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Figure 7. The absolute photometric errors (top) and total astrometric errors
(bottom) of 20000 simulated CCD stellar observations analysed with MPD
using an undersampled discrete Gaussian PSF with a FWHM of 1.5 px
(B~ 6.12px>; V =1).

What starts going wrong at Eye ~ 30000 e~? Fig. 8 shows
a 1-px-wide slice through a pixel-centered discrete Gaussian PSF
with FWHM = 1.5px that was shifted half of a pixel in X to
the right using damped sinc function given in equation (49). The
dashed black curve looks fine, but when expanded by a factor of
100, one sees that negative side lobes have been created due to the
fact that the Nyquist—-Shannon sampling theorem has been violated.
Doing a sinc interpolation (damped or otherwise) on undersam-
pled data is never a good idea — the ‘ringing’ seen in Fig. 8 is a
classic signature of an edge that is too sharp to be adequately ex-
pressed with the limited spatial information contained in an under-
sampled observation. The biggest negative side lobe of the shifted
PSF has a value of about —0.0006. Although that may seem to be
a small value compared to the total volume integral of 1, it is actu-
ally quite disastrous because negative PSF values have no physical
meaning.

It is now clear what has gone wrong for stars with &y 2
30000 e~. At stellar intensity values greater than 17000 elec-
trons, the intensity-scaled undersampled PSF models can have neg-
ative side lobes that are larger than the rms observed background
sky noise level (| — 0.0006] x 17000e~ = 10.2e~ > 10e” =
VB). At stellar intensity values greater than 167000 electrons,
the observational models have physically nonsensical negative sky
values.

Aliasing (ringing) effects will generally only be seen with bright
stars since a large number of photons are required in order to ade-
quately sample the higher spatial frequencies of a PSF.
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Fitting undersampled observations of bright stars with undersam-
pled PSFs results in poor photometry and astrometry.

5.3 Supersampled discrete PSFs

A supersampled PSF is a PSF with pixels that have greater spatial
resolution (higher spatial frequencies) than the actual pixels in the
observational data. For example, a 2 x 2 supersampled PSF uses
four pixels to describe every physical pixel of the CCD observation;
each supersampled pixel has twice the spatial resolution of the actual
pixels in the observation.

20000 undersampled CCD stellar observations were simulated
using an analytical Gaussian with a FWHM = 1.5 px; the other
simulation parameters were the same as before. All the simulated
observations were analysed with MPD using a 2 x 2 supersam-
pled discrete Gaussian PSF with FWHM = 1.5px (3 ~ 6.17 px%;
V=10

Fig. 9 shows the absolute photometric errors and total astrometric
errors of this numerical experiment. By providing MpD with extra in-
formation, in the form of a supersampled PSF, the Nyquist-Shannon
sampling theorem was no longer violated and excellent photometry
and astrometry was done with this undersampled data set.

Fig. 10 shows the relative errors for £ and X'. The relative stellar
intensity errors are normally distributed. However, the relative X’
position errors are almost, but not quite, normally distributed. The
MPD code accurately measures the stellar positions (i.e. the median
difference, X — Aje, values are zero), but the rms position er-
ror estimates (o y) are slightly underestimated (the top and bottom
whiskers for &y, 2 10000 e~ are seen to extend beyond the grey
bands). The same effect is seen with ). Using a higher resolution
supersampled PSF (3 x 3,4 x 4, ...) does not eliminate the small
underestimation by MPD of position errors. The position errors esti-
mated by MPD are close to the photonic limit, but the actual errors —
for undersampled observations — are close to the astrometric CRLB
with square CCD pixels (Winick 1986).

Accurate and precise CCD stellar photometry and astrometry may
be obtained with undersampled CCD observations if supersampled
PSFs are used during the PSF-fitting process.
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Figure 9. The absolute photometric errors (top) and total astrometric errors
(bottom) of 20000 simulated CCD stellar observations analysed with MPD
using a 2 x 2 supersampled discrete Gaussian PSF with a FWHM of 1.5 px
(B~ 617px>; V =1).

i 4:— Ce . 4
N 2f | :
; Of_ll NARIRTARORAIN

& =

& 2 E LTI T
2 ,E

 4F . . YL
S S J._[’ l
% 2 EALL

% -2 E AT
T E il il vl St

102 103 104 108 106
Electrons

Figure 10. Relative stellar intensity errors (top) and relative X’ position
errors (bottom) of the data set used in Fig. 9.

5.4 Critically sampled discrete PSFs

Let us now investigate what happens when critically sampled data
are fit with a critically sampled PSF.

20000 critically sampled CCD stellar observations were simu-
lated using an analytical Gaussian with a FWHM = 2.35482 px;
the other simulation parameters were the same as before. All the
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Figure 11. The absolute photometric errors (top) and total astrometric
errors (bottom) of 20000 simulated CCD stellar observations analysed
with MPD using critically sampled discrete Gaussian PSF with a FWHM of
235482 px (B ~ 13.62px%; V = 1).

simulated observations were analyzed with MPD using a critically
sampled discrete Gaussian PSF with FWHM = 2.35482 px (8 ~
13.62px%; V =1).

Fig. 11 shows the absolute photometric errors and total astromet-
ric errors of this numerical experiment. Fig. 12 shows the relative
errors for £ and X'. Looking carefully at Figs 11 and 12, one sees
that the photometric and astrometric performance is well matched
to the theoretical expectations except for the brightest three bins
(e 2 316000 7).

20000 critically sampled CCD stellar observations were simu-
lated using an analytical Gaussian with a FWHM = 2.35482 px;
the other simulation parameters were the same as before. All the
simulated observations were analysed with MPD using a 2 x 2
supersampled discrete Gaussian PSF with FWHM = 2.35482 px
(B~13.62px% V =1).

Fig. 13 shows the absolute photometric errors and total astromet-
ric errors of this numerical experiment. Fig. 14 shows the relative
errors for £ and X'. The photometric and astrometric performance is
well matched to the theoretical expectations for all stellar intensities.

Comparing Fig. 7 with Fig. 9 and Fig. 11 with Fig. 13, one sees
that one can obtain excellent stellar photometry and astrometry with
the MATPHOT algorithm for all stellar intensities — even if the obser-
vational data is undersampled — as long as the discrete PSFs used
to do the model fitting are sampled finely enough to have sufficient
spatial frequency coverage such that the Nyquist-Shannon sampling
theorem is not violated.

Comparing Fig. 3 with Fig. 11, one sees that the breakpoint for the
MATPHOT algorithm between undersampled and oversampled data is
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Figure 12. Relative stellar intensity errors (top) and relative X position
errors (bottom) of the data set used in Fig. 11.
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Figure 13. The absolute photometric errors (top) and total astrometric
errors (bottom) of 20 000 simulated CCD stellar observations analysed with
MPD using a 2 x 2 supersampled discrete Gaussian PSF with a FWHM of
235482 px (B ~ 13.62px%; V = 1).

13.62 <3< 21.44 px2 or, in terms of a Gaussian FWHM maximum,
2.35482 < FWHM < 3px.

If a discrete PSF is close to being critically sampled, then one
should use a supersampled discrete PSF that is oversampled in terms
of supersampled pixels (spx). In other words, if the equivalent-
background area is less than 21 square pixels (3 < 21px?%;
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Figure 14. Relative stellar intensity errors (top) and relative X’ position
errors (bottom) of the data set used in Fig. 13.

Gaussians: FWHM < 3.0 px), then one should use a supersampled
discrete PSF which has an equivalent-background area of at least
21 square supersampled pixels (3 > 21 spx?; Gaussians: FWHM >
3.0 spx).

5.5 Ugly discrete PSFs

Let us now investigate the photometric and astrometric performance
of the MATPHOT algorithm with an ugly (realistic) space-based PSF.

Fig. 15 shows a simulated Next Generation Space Telescope
(NGST) V-band CCD stellar observation. This simulated observa-

Figure 15. A simulated V-band NGST image based on a 2 x 2 super-
sampled PSF model for a 8-m TRW-concept 1.5-pum diffraction-limited
primary mirror with 1/13 rms wave errors. Contour levels of 90, 50,
10, 1 and 0.1 per cent of the peak intensity are shown with black
curves. The pixel scale is 0.0128 arcsec px ~!. This image uses a linear
stretch with a pixel intensity mapping of black for <70e~ and white for
>150e™.

tion used a 2 x 2 supersampled PSF, which was based on an 8-m
TRW-concept 1.5-um diffraction-limited primary mirror with 1/13
wave rms errors at 1.5 um; the original version of the PSF was
kindly provided by John Krist (STScI). The six-sided ‘snowflake’
pattern seen in Fig. 15 is mainly due to the fact that the primary mir-
ror is composed of segmented hexagonal-shaped mirrors. Observers
will note that this PSF is very similar to optical PSFs seen with the
10-m telescopes at the W. M. Keck Observatory. The 6.5-m James
Webb Space Telescope (JWST) is likely to have similar-looking near-
infrared PSFs once it achieves first light in ~2011.

The NGST PSF is so complicated that it is unlikely that it could
be represented adequately with a continuous analytical mathemati-
cal function. Space-based observations frequently have high spatial
frequencies, which make them ideal candidates for photometric and
astrometric analysis using discrete PSFs.

20000 CCD stellar observations were simulated using the sim-
ulated V-band NGST 2 x 2 supersampled PSF described above;
the other simulation parameters were the same as before. All the
simulated observations were analysed with MpD and the PSF used
to create the simulated observations.

Fig. 16 shows the absolute photometric errors and total astro-
metric errors of this numerical experiment. Fig. 17 shows the rel-
ative errors for £ and X'. The photometric and astrometric perfor-
mance is well matched to the theoretical expectations for all stellar
intensities.

Although only Gaussian PSFs were used in previous numerical
experiments, the excellent fit seen in the top panel of Fig. 16 between
the theoretical photometric performance model (Section 2.3.4) and

ngstx2 1 31.25
L1l

||||,|,|ﬂ

e
[

0.01

0.001

o
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0.01
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Astrometric Error [px] Photometric Error [mag]

10? 108 104 105 10¢
Electrons

Figure 16. The absolute photometric errors (top) and total astrometric
errors (bottom) of 20 000 simulated CCD stellar observations analysed with
MPD using the 2 x 2 supersampled NGST PSF described in Fig. 15 (8 ~
31.25px% V =1).
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Figure 17. Relative stellar intensity errors (top) and relative X’ position
errors (bottom) of the data set used in Fig. 16.

actual MPD measurements using such an ugly discrete PSF is not
surprising once one remembers that the theoretical photometric per-
formance model was derived from an abstract PRF.

The development of the theoretical astrometric performance
model, however, required differentiation of the PRF, which was
assumed to be an oversampled analytical Gaussian function. The
analytical Gaussian bright star astrometric limit was transformed to
the general form by assuming that the Gaussian-specific S? term
could be replaced with the more general £? term, which, by def-
inition, can be computed for any PRF. The same assumption was
then used to derive the general faint star astrometric limit. The ex-
cellent fit seen in the bottom panel of Fig. 16 indicates that this bold
assumption is not only useful but practical. Many numerical exper-
iments with very ugly discrete PSFs have shown that the theoretical
astrometric performance model of Section 2.4.4 works well with
ugly discrete PRFs.

If the MATPHOT algorithm is optimally extracting photometric and
astrometric information from a stellar observation, and MPD has been
correctly coded, and the CCD observation has been properly cali-
brated, and the PRF used in the observational model is correct, and
accurate estimates of the measurements errors for each pixel have
been made, then one expects that the y? goodness-of-fit value re-
ported by MPD to be distributed as a x 2 distribution with the number
of degrees of freedom equal to the difference between the num-
ber of pixels in the observation and the number of free parameters.
Fig. 18 shows that this prediction about the precision and accuracy
of the MATPHOT algorithm has been verified: the cumulative distri-
bution of the x? reported by MPD (thin black curve) is seen to lie
on top of the cumulative x? distribution of 3596 [= 60? pixels —
4 free parameters (£, X', Y and B)] degrees of freedom (thick grey
curve).

The mMpD code works well with ugly discrete PSFs and its per-
formance can be well predicted using the general theoretical photo-
metric and astrometric performance models given in Section 2.

The x? goodness-of-fit value reported by MPD is a statistically
reliable measure of the quality of a photometric and astrometric re-
duction of a stellar observation obtained with the MATPHOT algorithm
using ugly discrete PSFs.

© 2005 RAS, MNRAS 361, 861-878
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Figure 18. A comparison between the cumulative x> distribution for
3596 degrees of freedom (thick curve) and the measured x2 value (thin
curve), of the data set used in Fig. 16, reported by the MPD implementation
of the MATPHOT algorithm.

5.6 Ugly detectors

Let us now investigate the photometric and astrometric performance
of the MATPHOT algorithm with an ugly PSF and an ugly detector.

Suppose one has a detector where every pixel has been divided
into 16 square regions called ‘subpixels’. Let us call the first row
and first column of subpixels ‘gate structures’, which are optically
inactive with O per cent QE. The remaining nine subpixels are the
optically active part of the pixel with a 100 per cent QE. By defini-
tion, such a pixel would have a very large intrapixel QE variation
with only 56.25 per cent of the total pixel area being capable of
converting photons to electrons.

A few extra lines of code were added to the MPD program to sim-
ulate the image formation process with such an ugly detector. The
new version of MpD is called MPDX, and was designed specifically
for use with 4 x 4 supersampled PSFs.

10000 CCD stellar observations of —13 mag stars
(~ 2.5123y) were simulated and analysed with MPDX using
a4 x 4 supersampled version of the simulated V-band NGST PSF
described above. The observed background level was assumed to
be a constant value of B = 56.25 ¢~ (Bye = 100 y, (V) = 0.5625),
and all other simulation parameters were the same as before.
The measured PRF volume of these simulated observations was
V = 0.5616 £ 0.0185, which is consistent with the expected
value of 0.5625 from the physical structure of a single pixel. The
median and semiquartile range of the effective background area
(B) of these observations were, respectively, 28.10 and 4.82 px?.
The median critical-sampling scale length of these observations
was £ ~ 0.8398 px — indicating that these observations were
undersampled, as expected.

The optically inactive gate structures of the pixel cause the ob-
served number of electrons in each stellar image to be significantly
less than the number of photons that fell on the detector. The total
amount of loss was dependent on where the centre of the star fell
within the central pixel of the stellar image. Fig. 19 shows that stars
centred in the middle of the active area of a pixel suffered a ~40 per
cent loss (Am = 0.56 mag), while those centered on gate structures
(grey points) lost up to 47 per cent (Am =~ 0.69 mag).

Although this numerical experiment may seem to be very artifi-
cial, large intrapixel sensitivity variations can be found in cameras
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Figure 20. The observed (left) and the measured (right) stellar magnitude
distributions of the 10000 —13 mag stars described in Fig. 19.

currently installed on the HST. Lauer (1999) reported peak-to-peak
variations of 0.39 mag at the J band (F110W) and 0.22 mag at the
H band (F160W) of the NIC3 camera of the HST NICMOS instru-
ment. The peak-to-peak variation of ~0.2 mag at F160W with NIC3
was independently confirmed by Hook & Fruchter (2000).

The mean observed stellar magnitude for these —13 mag stars
was —12.3728 £ 0.0359 mag. The photometric performance model
predicts an rms measurement error of 0.0036 mag for these bright
stars. With an average loss of 44 per cent and an rms measurement
error that is fen times larger than expected from photon statistics,
the observed stellar magnitudes were neither precise nor accurate.

Fig. 20 shows that MPD was able to do an excellent job in re-
covering the true stellar magnitude of the 10000 —13 mag stars —
despite being presented with a worst-case scenario of undersampled
observations with an ugly PSF imaged on an ugly detector with a
very large intrapixel QE variation.
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Figure 21. The absolute photometric errors (top) and total astrometric
errors (bottom) of 20 000 simulated CCD stellar observations analysed with
MPDX using a4 x 4 supersampled version of the NGST PSF (8 ~ 28.04 px?;
V =0.5625).

The mean measured stellar magnitude reported by MPDX was
—12.9998 +£ 0.0039 mag and the mean rms error estimated by MPDX
was 0.00384 £ 0.00006 mag. The photometric performance of MPDX
is fully consistent with theoretical expectations — which were de-
rived for an ideal detector with no intrapixel QE variation.

20000 CCD stellar observations were simulated and analysed
with MPDX using the same 4 x 4 supersampled version of the sim-
ulated V-band NGST PSF. The input stellar intensities ranged from
—6 to —15 mag (251 to 10°y). The observed background level
was assumed to be a constant value of B = 56.25 e (B =
100 y, (V) = 0.5625), and all other simulation parameters were
the same as before. The median and semiquartile range of the effec-
tive background area (3) of these observations were, respectively,
28.04 and 4.77 px°.

Fig. 21 shows the absolute photometric errors and total astromet-
ric errors of this numerical experiment. Comparing the simulation
results with the grey theoretical limits, one sees that the photometric
and astrometric performance of the MpDX code is well predicted by
the theoretical performance models given in Section 2.

Excellent stellar photometry and astrometry is possible with ugly
PSFsimaged onto ugly detectors as long as the image formation pro-
cess within the detector is accurately modelled by the photometric
reduction code.

6 DISCUSSION

After developing theoretical photometric and astrometric perfor-
mance model for PSF-fitting stellar photometry, I described the
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unique features of the MATPHOT algorithm for accurate and precise
stellar photometry and astrometry using discrete PSFs. I conducted
numerical experiments with the MPD implementation of the MATPHOT
algorithm and demonstrated that the computational noise due to the
chosen analysis method (numerical versus analytical) is insignifi-
cant when compared to the unavoidable photon noise due to the ran-
dom arrival photons in any astronomical CCD observation. The MAT-
PHOT algorithm was specifically designed for use with space-based
stellar observations where PSFs of space-based cameras frequently
have significant amounts of power at higher spatial frequencies. Us-
ing simulated NGST CCD observations, I demonstrated that mpx
relative astrometry and mmag photometry are possible with very
complicated space-based discrete PSFs.

The careful reader will observe that I have not discussed how a
discrete PSF is derived. The MATPHOT algorithm will optimally de-
termine the brightness and position of a star in a CCD observation
when provided with the correct PSF and DRF — functions that need
to be determined beforehand through calibration procedures. Pho-
tometric and astrometric accuracy and precision degrades if either
the PSF or DRF is poorly known. PSF reconstruction (calibration)
is a complicated topic in its own right, and has been the subject of
many articles, instrumentation reports and entire workshops. The
challenges of PSF reconstruction are many. An astronomer may be
faced with trying to derive a PSF from an observation

(i) with a variable PSF within the field of view,

(ii) that has too few bright stars,

(iii) that might be undersampled,

(iv) that might be poorly dithered,

(v) that might be poorly flat fielded,

(vi) that exhibits significant charge transfer efficiency variations,
(vii) that has variable charge diffusion within the CCD substrate,
(viii) with significant photon loss due to charge leakage,

(ix) that might not actually be linear below the 1 per cent level.

While many of these problems can be overcome by the proper design
of instruments or experiments, their solution is beyond the scope of
this article, which has sought to determine the practical limits of
PSF-fitting stellar photometry.

The analysis presented in this article has assumed that PSFs are
perfectly known — a situation that is rarely, if ever, physically pos-
sible. The cores of observationally based PSFs are generally much
better determined than the broad wings due to simple photon statis-
tics. The effect of large instrumental calibration errors can also be
significant. For example, flat-field limitations can dramatically im-
pact the achievable levels of photometric and astrometric precision.
An investigation based on theory of PSF errors and flat-field cali-
bration error on the limits of PSF-fitting stellar photometry would
be very difficult. An investigation based on numerical experiments,
however, might be a much more tractable proposition. In any case, a
through investigation of the effects of calibration errors on the limits
of PSF-fitting stellar photometry is best left to another article.
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Figure Al. A box-and-whiskers plot of a data set of 1000 normal deviates.
See the text for details.

APPENDIX A: BOX-AND-WHISKER PLOTS

A box-and-whisker plot (a.k.a. box plot) is a graphical method of
showing a data distribution. A box is drawn showing the inner quar-
tile range of the data which, by definition, include half of all the
data values (see Fig. Al). The median of the data is shown with a
bar inside the box. The bottom end of the box is the lower quartile
(25 per cent) of the data; Tukey (1977), the creator of the box-and-
whiskers plot, calls this value the lower hinge, LH, value. The top
end of the box is the upper quartile (75 per cent) of the data, which
is called the upper hinge, UH, value. The step value is 1.5 times
the inner quartile range: A = 1.5(UH — LH). The top fence value
is the sum of the upper hinge and step values: TF = UH + A. The

bottom fence value is the difference between the lower hinge and
step values: BF = LH — A. The top whisker is drawn from the upper
hinge value to the largest data value that is less than or equal to the
top fence value: TW < TF. Similarly, the bottom whisker is drawn
from the lower hinge value to the smallest data value that is greater
than or equal to the bottom fence value: BW > BF. Data values that
are greater than the top fence value or less than the bottom fence
value are called outliers and are plotted at their appropriate value
beyond the whiskers. For a normal distribution, which is a Gaussian
distribution with a mean of zero and a standard deviation of one, the
bottom fence, bottom hinge, median, top hinge and top fence val-
ues are, respectively, —2.6980 (0.35 per cent cumulative fraction),
—0.6745 (25 per cent), 0 (50 per cent), 0.6745 (75 per cent), 2.6980
(99.65 per cent).

Fig. Al shows a data set of 1000 normal deviates. The histogram
of the data with 0.1-wide bins is shown with thin black lines. The
cumulative fraction distribution of the data is shown as a thick grey
curve. The box-and-whisker plot of the data is shown with thick
black lines below the histogram; arrows show the relationship be-
tween various box values and the cumulative fraction distribution.
The mean and standard deviation of this data set are, —0.0341 and
0.9739, respectively. The bottom fence, bottom whisker, bottom
hinge, median, top hinge, top whisker and top fence values of this
data set are, respectively, —2.5511 (0.25 per cent cumulative frac-
tion), —2.4940 (0.30 per cent), —0.6522 (25.10 per cent), —0.0231
(50.00 per cent), 0.6137 (75.10 per cent), 2.4580 (99.50 per cent),
2.5126 (99.57 per cent). The seven outlier values of this data set,
—2.9500, —2.6320, 2.5390, 2.7150, 2.7430, 2.8270, 2.8530, are
plotted in Fig. A1 as diamonds beyond the whiskers.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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FLICKERING RED GIANTS IN THE URSA MINOR DWARF SPHEROIDAL GALAXY: DETECTION OF LOW-
AMPLITUDE VARIABILITY IN FAINT RED GIANT BRANCH STARS ON 10 MINUTE TIMESCALES"
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ABSTRACT

We have analyzed two epochs ldfibble Space Telescop¥ide Field Planetary Camera 2 observations of the
Ursa Minor dwarf spheroidal galaxy using the HSTphot photometric reduction package. We report the detection of
nine faint (M,, = 0.0 mag) red giant variable stars that exhibit low-amplitude brightness fluctuations on 10 minute
timescales with amplitudes ranging from 36 to 130 mmag. We have found variability in 14% of the red giants we
have observed. If low-amplitude variability of red giants on 10 minute timescales can be verified and should their
numbers prove to be at the 10% level or greater of all red giants in some ancient Population Il stellar systems, then
the observed color spread of the red giant branch of such systems wobiddsenedoy flickering red giants in
color-magnitude diagrams based on short (snapshot) observations of a single pair of 10 minute timescale observations
in two different filters.

Subject headingggalaxies: individual (Ursa Minor dwarf spheroidal) — methods: statistical —
stars: variables: other — techniques: photometric

Online material:color figures, machine-readable table

1. INTRODUCTION of HST observations of the Ursa Minor (UMi) dSph galaxy
and report the detection of nine faifd{ = 0.0 mag) red giant

Most stars are variable to some extent. The Sun, for example,variable stars that flicker on 10 minute timescales witam-
plitudes ranging from 36 to 130 mmag.

is a nonradial pulsator that exhibits brightness fluctuations at the
level of ~3 x 10°° mag (Barban et al. 2004). As stars evolve

through the instability strip of the Hertzsprung-Russell diagram, 2. OBSERVATIONS AND STELLAR PHOTOMETRY
they exhibit periodic pulsations lasting from 1-135 days for clas-
sical Cepheids to 5-29 hr for RR Lyraes to 0.2-5 hr&@cuti Two sets oHSTWFPC2 observations of the UMi dSph were

stars, with amplitudes ranging from several magnitudes for someused in this investigation. The first set of observations
bright Cepheid giants to millimagnitudes for some dinscuti (u2pb0101t to u2pb0106t), from the program GTO-6282 (PI:
dwarf stars. Westphal), was obtained on 1995 July 4 and included three im-

Variability of ancient Population Il stars that are cooler (red- ages (eachk1100 s) through the F555W~Y) filter and three
der) than the right side of the instability strip is an active area images (each<1200 s) through the F814W~|) filters. The
of research. While many K and M giant variability studies have second set of observations (u5er1301r to u5er1308r), from the
concentrated on long-period luminosity changes, with periods program GO-8095 (PI: Ibata), was obtained nearly 4 years later
from days to years (see, e.g., Eggen 1973; Jorissen et al. 1997pn 1999 July 2 and included four images (eg8i00 s) in F555W
Percy & Polano 1998), most such studies were not designedand four images (eack500 s) in F814W. Both sets of obser-
to detect fast variations with timescales ranging from several vations have similar coverage on the sky since they were obtained
minutes to 1 hr. Edmonds & Gilliland’s study of the K giants with nearly identical target positions and telescope roll angles.
in the Galactic globular cluster 47 Tucanae with tHebble These observations were recalibrated using the on-the-fly cali-
Space Telescop€HST) Wide Field Planetary Camera 2 bration pipeline at the Canadian Astronomy Data Centre (CADC)
(WFPC2) revealed a surprising number of probable variablesand were retrieved by us using guest accounts kindly provided
between the asymptotic giant branch and the red giant branchoy the CADC.
(RGB) with periods on the order of a few days ahdmplitudes These observations were reduced using the HSTphot point-
ranging from 5.3 to 14 mmag (Edmonds & Gilliland 1996).  spread function (PSF)-fitting stellar photometry package (ver. 1.1;

In this Letter, we investigate the level of variability to be 2003 May) of Dolphin (2000a). Bad pixels were masked using
found in K giants in nearby dwarf spheroidal (dSph) galaxies the data quality images. The photometry was performed with the
with ancient stellar populations. We have analyzed two epochsHSTphot program on all images of a particular data set simulta-

neously. Instrumental magnitudes were transformed to stakdard

1 Based on observations with the NASA/ESAubble Space Telescope  andl magnitudes using the calibration solutions described by Dol-
obtained from the data archive at the Space Telescope Science Institute, whickphin (2000b, 2002a) with updates provided within the HSTphot
is operated by the Association of Universities for Research in Astronomy, Inc., package. The first F555W image of each data set (1995:

under NASA contract NAS 5-26555. . . .
2 Guest User, Canadian Astronomy Centre, which is operated by the Herz- U2PD0101t; 1999: uSer1301r) was used as the coordinate reference

berg Institute of Astrophysics, National Research Council of Canada. frame for the identification of all objects in the other images of
% Based on research conducted at NOAO as part of the Research Experiencethat data set.
for Undergraduates Program. Figure 1 shows th¥ versusV — | color-magnitude diagram

4 Current address: Department of Astronomy, Indiana University, Swain Hall : - P
West 319, 727 East Third Street, Bloomington, IN 47405-7105. for the 1995 observations of the UMi dSph galaxy (similar to
s Operated by the Association of Universities for Research in Astronomy, Fig. 12 of Dolphin 2002b). Comparing our PSF-fitting pho-

Inc., under cooperative agreement with the National Science Foundation.  tometry of the 1995 data set with the aperture photometry of
L41
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for a minimum image-to-image photometric scatter of 0.01 mag
(see, e.g., Holtzman et al. 1995a, 1995b; Stetson 1998; Dolphin

2000a; Pritzl et al. 2003). We required that each candidate var-
iable be classified by HSTphot as a “good statags= 1 ) and
have an rms measurement error of 0.10 mag or lesd! iob-
servations of a given epodaf observation. These selection cri-
teria yielded a subset 157 stars from the 1995 photometry and
a subset 216 stars in the 1999 photometry.

Two independensets of variable candidates from the subsets
of the 1995 and 1999 photometry were then made by selecting
all stars withy2,, values greater than 9.49 and 12.59, respec-
tively (Abramowitz & Stegun 1964, p. 988) = 0.05 and
v = 4 and 6). We found a total of 31 and 29 potential variable
candidates, respectively, at the 95% confidence level in the
1995 and 1999 observations with an averagenagnitude
brighter than 22.8 mag, which is approximately the mean
brightness of the subgiant branch of the UMi dSph galaxy. We
found a total of 11 candidates that appearedbothlists; nine
are stars on UMi's RGB (see Fig. 1), one is a subgiant branch
star, and the remaining object hasva- | color2o475 +
0.027mag and & magnitude 0f20.951+ 0.016, which sug-
gests that it is a distant galaxy or a quasar.

The photometry of the nine red giant variable candidates for
both observation epochs is given in Table 1. Lines 1-36 give the
the limiting magnitude o/ = 25.0 ; a total of 65 red giants are found within 1995 photometry and lines 37—72 give the 1999 photometry, with
the dashed region enclosing the observed portion of the RGB (the top of the four lines per star per epoch. The amplitudgs  And , given in
RGB was lost as a result of saturation). The 10 low-amplitude variable can- Table 1, are defined as being the difference between the faintest
didates, described in § 3, are shown as big diamorfiiee [the electronic and brightest magnitude measurementsMi@and |, respectively,
edition of the Journal for a color version of this figuye. in a given observation epoch. Light curvesdrand! of four of
the nine RGB variable candidates are given in Figure 2.

How believable are the reported photometric errors of HSTphot?
If the photometric errors reported by HSTphot are accurate, then
the cumulative distribution of the difference between many ob-
servations of a star and its average magnitude divided by the
reported photometric error should be equivalent to the cumulative
distribution of a Gaussian with a mean of zero and a standard

Candidate variables were selected from the HSTphot outputdeviation of 1 (also known as the cumulative normal distribution;
using the followingy*based test statisti;zw = xZ2+ x2 which see the dashed curve of Fig. 3). We selected a subset of 952
comblnes a variability test statistic in the filter, x& = measurements of stars from the 1999 HSTphot photometry that

(V- (\/))2/(0\, + 0. 012) with a variability test statisticin ~ were not variable at the 90% confidence levet?( @F <
the i fllter X2 EN'l (I, = (1)) (o? + 0.0F ), whereN, N ) 6.251 Q = 0.1and» = 3). The jagged thin dark curve in Fig-
is the number of images obtalned with the F555W (F814W) ure 3 shows the cumulative distribution of the difference between
filter, \/ (I;) is the standard magnitude of tfiln observation,  the HSTphot magnitude of the nonvariable and the average
oy, (a,) is the matching rms measurement error, an)d (1) () is HSTphot magnitude divided by theoftened photometric errpr
the average magnitude of all observations with a given filter. A whichis defined to be the reported HSTphot magnitude error added
small error of 0.01 mag has been added in quadrature to accounin quadrature to a small image-to-image error of 0.01 mag. These
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FiG. 1.—V vs.V — | color-magnitude diagram for the 1995 observations of
the UMi dSph galaxy. The error bars indicate typical rmssuncertainties
for a single star at the corresponding magnitude. There are 852 stars down to,

Mighell & Burke (1999), we find that ou¥ magnitudes are
slightly fainter AVyz_ws = 0.040+ 0.015 mag) and our
V — | colors are slightly redderA(V — 1)yr_ms = 0.030*
0.020mag] than that of Mighell & Burke.

3. FLICKERING LOW-AMPLITUDE RED GIANT VARIABLES

TABLE 1
PHOTOMETRY OF THE RGB VARIABLE CANDIDATES

Name 1> 1 A, V) V., V, V, V,
2 Xv O Oy, Oy, Oy, Oy,
3 A o Iy I Iy I,
4 Xi Oy oy, oy, Ol o,

RGB1...... 173764892 1 0.036 20.323 20.338 20.339 20.303

2 5.58 0.004 0.014 0.006 0.006
3 0.111 19.331 19.417 19.306 19.345
4 29.32 0.004 0.015 0.005 0.005

Nortes.—Table 1 is published in its entirety in the electronic edition of Astrophysical
Journal Letters A portion is shown here for guidance regarding its form and content.

2 The leftmost digit of the identification gives the WFPC2 CCD number (1, 2, 3, or 4, for
cameras PC1, WF2, WF3, or WF4, respectively) where the star was found in the first F555W
observation of each opoch of observation (1995: u2pb0101t; 1999: u5er1301r). The rightmost
four digits give thex-coordinate of the star multiplied by 10. The remaining four digits give
they-coordinate of the star multiplied by 10. For example, the first star has an ID of 173764892,
indicating that it is found on the PC1 image at {txey) locatior{4&#9.2, 737.6)
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Fic. 2.—Light curves for four of the nine low-amplitude RGB variable candidates in the UMi dSph galaxy. Each row gives théeftp@hd 1999 K(ight)
light curves and a finding chart for a given RGB variable candidate (see Table 1). The first set of points, for a given observation epathglis coueve; the
second shows thelight curve plotted 1 mag fainter. The variable name is shown in the bottom left-hand corner of each row. The positional identifier and the
value of thex2,, statistic is shown, respectively, in the top left-hand and top right-hand corner of each box, for each observation epoch. The finding charts have
a small field of view of3” x 3’ , with the arrow of the compass pointing north and the line pointing east. Note that these are not crowded star fields. The time
value is the Modified Julian Date (MJD) of the middle of the observation; add 2,400,000.5 to get the JuliarEBatthe electronic edition of the Journal for
a color version of this figurg.

distributions are highly likely to be different; the Kolmogorov- photometric errors are conservatiidow conservative? Note that
Smirnov (K-S) statistic probability that the underlying distributions the jagged curve is well modeled by the thick curve, which is a
described by the jagged and dashed curves arsaimeis just cumulative distribution of a Gaussian with a mean of zero and a
0.2%. Note that the jagged curve of Figure 3 ledowthat of standard deviation of 0.& (= 0.8 ). These distributions stee

the dashed curve foregativevalues anadbovethat of the dashed tistically consistentthe K-S statistic probability that the underlying
curve for positive values. This implies thasoftenedHSTphot distributions described by the jagged and thick curves arsine

is 30.2%—which is much greater than the standard rejection level
of <5%. Remembering that the K-S test is a negative test, we
conclude thasoftened HSTphot photometric errors are overes-
timated by~25% Considering that the definitions of our variability
statistics forV and| used softened HSTphot errors, the actual
probabilities for variability of the nine RGB variable candidates
given in Table 1 are probably higher than suggested by their
tabulatedy? ang? values.

Our claim that the softened HSTphot photometric errors are
overestimated by about 25% has been verified using a substan-
tially larger data set of another astronomical target. We analyzed
all of the F555W and F814W exposures of the program GO-
6114 (PI: Renzini), which were originally used to study the white
_a 2 1 o 1 = a dwarf cooling sequence of 47 Tuc (see Zoccali et al. 2001). We

found 1070 nonvariable stars that had rms measurement errors
( mag — <mag> ) / V( o2, +0.01%) of 0.10 mag or less in all 10 F555W and all 10 F814W obser-

Fic. 3.—Statistical test of HSTphot photometric errors. Softened HSTphot vations in this data setyf Ok < 14-'6837 Q=01 and
photometric errors are conservative in that they typically overestimate the true V= 9)' We computed, as ab_ove, the d.lﬁerence between a mea-
error by ~25%. See the text for detailsSge the electronic edition of the ~ surement of the stellar magnitude and its average HSTphot mag-
Journal for a color version of this figur. nitude divided by the softened photometric error. If the softened

Cumulative Fraction
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photometric errors are overestimated by 25%, then we expectamplitude red giants in 47 Tuc with variability on 10 minute
the mean and standard deviation of this distribution to be, re-timescales. Although they had excellent 67 mmag photometry
spectively, zeroX = 0 ) and = 0.8 ; we measured statistically for stars on the horizontal branch, the photometric errors for faint
consistent values of = —0.0298 and= 0.8133 . Bright stars RGB stars were considerably highetl0—40 mmag; see Figs. 10
(S/N>10) have softened HSTphot photometric errors that are and 4 of Edmonds et al. 1996). The unambiguous detection of

overestimated by a factor of about 25%. low-amplitude variability in red giant variables generally requires
excellent photometry with errors of 20 mmag or better. Given that
4. SUMMARY AND DISCUSSION the flickering UMi red giants have a median semiamplitude value

of 29 mmag, the detection of flickering faint red giants in 47 Tuc

Our conservative statistical analysis of HSTphot photometry would likely have been difficult with th&-band (F336WHST
of two epochs oHSTWFPC2 observations of the UMi dSph  Planetary Camera data set used by Edmonds & Gilliland.
galaxy has yielded the detection of nine faikt, (= 0.0 mag) If the timescale of the source of variability is a few years or
red giant variable stars that exhibit low-amplitude brightness less, then the flickering of red giants could possibly be seen to
fluctuations on 10 minute timescales with amplitudes ranging turn on and off during a multiyear high-precision space-based
from 36 to 130 mmag. We have found variability in 14% of photometric survey by NASA'&epler planet-finder mission or
the red giants we have observed (nine out of 65; see Fig. 1).the next generation of ground-based digital sky survey projects

Are these detections purely statistical flukes? While a statisticallike Pan-STARRS or the Large Synoptic Survey Telescope. In-
possibility, such an explanation is highly improbable. Variability stead of waiting for those projects to achieve first light, ground-
in each of these nine stars was detedtetbpendently in two  based high-precision follow-up studies could be conducted today
epochs of observatiorseparated by nearly 4 years in time. Dif- with short 3-5 minute exposures using the latest generation of
ferent parts of the WFPC2 cameras were used to make thes€€CD cameras, like the OPTIC camera (Howell et al. 2003), which
observations: the 1999 observations were dithered, but the 1993s based on orthogonal transfer CCDs, at a 4 m class telescope,
observations were not. And while we may have found a previously like the 3.5 m WIYN telescope at the Kitt Peak National Ob-
undetected problem within the WFPC2 cameras or calibrations,servatory.
the large body of published Local Group stellar population studies  If flickering of red giants on 10 minute timescales can be verified
conducted with the WFPC2 instrument suggests that instrumentabnd should their numbers prove to be at the 10% level or greater
problems at this level would likely have been previously found. of all red giants in some ancient Population Il stellar systems, then

If there is nothing wrong with the actual observations, then the observed color spread of the RGB of such systems would be
could there be something wrong with HSTphot? Figure 3 indicates broadenedby flickering red giants in color-magnitude diagrams
that image-to-image accuracy of the photometry of nonvariable based on short (snapshot) observations of a single pair of 10 minute
stars is excellent and conservative. Significant systematic imagetimescale observations in two different filters (e.g., GO-8192, GO-
to-image measurement errors by HSTphot—including problems8601). One expects that any possible overestimation of the length
with charge transfer efficiency and aperture corrections—would of star formation bursts due to flickering faint red giants would
have been detected during the statistical tests of nonvariable starbe minimal because state of the art star formation history studies
described above. False detections by HSTphot, while possibleare based on the average colors derived from total exposure times
seem to be rather unlikely. that are generally much longer than 10 minutes.

Are these flickering red giants exhibiting periodic variabil-
ity? The small number and timing of these observations pre- K. J. M. was supported by a grant from the National Aer-
cludes any quantitative analysis for periodicity in these flick- onautics and Space Administration (NASA), Interagency Order
ering red giants. Note that the amplitudes reported here mayNo. S-13811-G, which was awarded by the Applied Infor-
only be lower limits of the true amplitudes. Given this poor mation Systems Research Program (NRA 01-OSS-01) of
state of our current understanding of the actual nature of theNASA’s Science Mission Directorate (formerly known as the
brightness fluctuations in these red giant variables, any dis-Office of Space Science). I. U. R. was supported by the NOAO/
cussion of the source of variability is purely speculative. KPNO Research Experiences for Undergraduates (REU) Pro-

The underlying phenomenon responsible for flickering faintred gram, which is funded by the National Science Foundation
giants is likely to be different than that for the K giant variables through Scientific Program Order No. 3 (AST-0243875) of the
(KGVs) found by Edmonds & Gilliland (1996) near the region Cooperative Agreement No. AST-0132798 between the As-
of the RGB heap of 47 Tuc (Bedin et al. 2000). The KGVs sociation of Universities for Research in Astronomy and the
probably vary on timescales that are much longer than 10 minutesNSF. This research has made use of NASA'’s Astrophysics Data

Edmonds & Gillland (1996) did not find any faint low- System Abstract Service.
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QLWFPC2: Parallel-Processing Quick-Look WFPC2
Stellar Photometry Based on the Message Passing
Interface

Kenneth John Mighell

National Optical Astronomy Observatory, 950 North Cherry Avenue,
Tucson, AZ 85719

Abstract. I describe a new parallel-processing stellar photometry code
called QLWFPC2 (http://www.noao.edu/staff/mighell/qlwfpc2) which
is designed to do quick-look analysis of two entire WFPC2 observations
from the Hubble Space Telescope in under 5 seconds using a fast Be-
owulf cluster with a Gigabit-Ethernet local network. This program is
written in ANSI C and uses MPICH implementation of the Message
Passing Interface from the Argonne National Laboratory for the parallel-
processing communications, the CFITSIO library (from HEASARC at
NASA’s GSFC) for reading the standard FITS files from the HST Data
Archive, and the Parameter Interface Library (from the INTEGRAL Sci-
ence Data Center) for the IRAF parameter-file user interface. QLWFPC2
running on 4 processors takes about 2.4 seconds to analyze the WFPC2
archive datasets u37ga407r.c0.fits (F555W; 300 s) and u37gad01r.c0.fits
(F814W; 300 s) of M54 (NGC 6715) which is the bright massive globular
cluster near the center of the nearby Sagittarius dwarf spheroidal galaxy.
The analysis of these HST observations of M54 lead to the serendipitous
discovery of more than 50 new bright variable stars in the central region of
Mb4. Most of the candidate variables stars are found on the PC1 images
of the cluster center — a region where no variables have been reported
by previous ground-based studies of variables in M54. This discovery is
an example of how QLWFPC2 can be used to quickly explore the time
domain of observations in the HST Data Archive.

1. Motivation

Software tools which provide quick-look data analysis with moderate accuracy
(3-6 percent relative precision) could prove to be very powerful data mining
tools for researchers using the U.S. National Virtual Observatory (NVO).

The NVO data server may also find quick-look analysis tools to be very
useful from a practical operational perspective. While quick-look stellar pho-
tometry codes are excellent tools to create metadata about the contents of CCD
image data in the NVO archive, they also can provide the user with real-time
analysis of NVO archival data.

It is significantly faster to transmit to the NVO user a quick-look color-
magnitude diagram (consisting of a few kilobytes of graphical data) than it is
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to transmit the entire observational data set which may consist of 10, 100, or
more megabytes of data. By judiciously expending a few CPU seconds at the
NVO data server, an astronomer using the NVO might well be able to determine
whether a given set of observations is likely to meet their scientific needs.

Quick-look analysis tools thus could provide a better user experience for
NVO researchers while simultaneously allowing the NVO data servers to per-
form their role more efficiently with better allocation of scarce computational
resources and communication bandwidth.

Successful quick-look analysis tools must be fast. Such tools must provide
useful information in just a few seconds in order to be capable of improving the
user experience with the NVO archive.

2. QDPHOT

The MXTOOLS! package for IRAF has a fast stellar photometry task called
QDPHOT (Quick & Dirty PHOTometry) which quickly produces good (about
5% relative precision) CCD stellar photometry from 2 CCD images of a star
field. For example, QDPHOT takes a few seconds to analyze 2 Hubble Space
Telescope WFPC2 frames containing thousands of stars in Local Group star
clusters (Mighell 2000). Instrumental magnitudes produced by QDPHOT are
converted to standard colors using the MXTOOLS task WFPC2COLOR.

3. QLWFPC2

I have recently implemented a parallel-processing version of the combination of
the QDPHOT and WFPC2COLOR tasks using the MPICH? implementation of
the Message Passing Interface (MPI) from the Argonne National Laboratory.
This new stand-alone multi-processing WFPC2 stellar photometry task is
called QLWFPC2? (Quick Look WFPC2) and is designed to analyze two com-
plete WFPC2 observations of Local Group star clusters in less than 5 seconds
on a 5-node Beowulf cluster of Linux-based PCs with a Gigabit-Ethernet local
network. QLWFPC?2 is written in ANSI C and uses the CFITSIO* library (from
HEASARC at NASA’s Goddard Space Flight Center) to read FITS images from
the HST Data Archive, and the Parameter Interface Library (PIL®) (from the
INTEGRAL Science Data Center) for the IRAF parameter-file user interface.

"http://www.noao.edu/staff/mighell/mxtools
’http://www-unix.mcs.anl.gov/mpi/mpich
3http://www.noao.edu/staff/mighell/qlufpc2
‘http://heasarc.gsfc.nasa.gov/docs/software/fitsio

Shttp://isdc.unige.ch/bin/std.cgi?Soft/isdc_releases_public\#osa-2.0
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4. QLWFPC2 Performance

The current implementation of QLWFPC2 was tested on a Beowulf cluster com-
posed of 5 single 1.8-GHz AMD Athalon CPUs with 3 GB total memory inter-
connected with a Gigabit-Ethernet local network and 120 GB of NFS-mounted
disk and an additional 40 GB of local disk.

QLWFPC2 running on 4 processors takes about 2.4 seconds (see Figure 1) to
analyze the WFPC2 archive data sets u37ga407r.c0.fits (filter: F555W; exposure:
300 s) and u37gad01r.c0.fits (filter: F814W; exposure: 300 s) of M54 which is the
bright massive globular cluster near the center of the Sagittarius dwarf spheroidal
galaxy. QLWFPC2 analyzed over 50,000 point source candidates and reported
V, L[, F555W and F814W photometry of 14,611 stars with signal-to-noise ratios
of 8 or better.

The analysis of these HST observations of M54 lead to the serendipitous
discovery of more than 50 new bright variable stars in the central region of M54
(Mighell & Schlaufman 2004). Most of the candidate variables stars are found
on the PC1 images of the cluster center — a region where no variables have been
reported by previous ground-based studies of variables in M54. This discovery is
an example of how QLWFPC2 can be used to quickly explore the time domain
of observations in the HST Data Archive.

5. Recommendations

¢ Buy fast machines. QLWFPC2 almost met the design goal of 5 seconds
with a single CPU. Note that a very large number of machines operating
at less than 1 GHz would not be able to meet the 5 second design goal.

e Buy fast networks. Gigabit Ethernet is ideally suited for today’s GHz-
class CPUs and is now very affordable. Old networks operating at Fast
Ethernet speeds will be bandwidth-bound for tasks requiring large (>1
MB) messages. The test Beowulf cluster has a latency of 90 microseconds
and a sustained bandwidth of 33 MB/s for large messages.

e Buy fast disks. The main disk of the test Beowulf cluster can read large
FITS files at a respectable 30 MB/s with 7200 rpm disks. Nevertheless,
reading two WFPC2 images still takes 0.6 seconds to read — which is a
significant fraction of the measured total execution times.
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QLWFPC2 Performance on a 5—node Beowulf Cluster
| | | | |

time [sec]

® actual
limit

number of processors

Figure 1.  Typical QLWFPC2 performance results with two WFPC2 obser-
vations of a Local Group globular cluster running on a 5-node Beowulf cluster
with 1.8 GHz CPUs and a Gigabit-Ethernet local network. The points show
actual run times for between 1 and 5 processors; QLWFPC2 running on 4
processors takes about 2.4 seconds. The thin line shows a simple performance
model based on measured cluster performance metrics (network bandwidth,
disk drive bandwidth, and execution time of QLWFPC2 with a single CPU).
The thick line shows the theoretical limit of performance. Note that the
current version of the QLWFPC2 algorithm already meets the ideal perfor-
mance values for 1, 2, and 4 processors. A single WFPC2 data set is about
10 Mbytes in size and is partitioned into four calibrated images from the
PC1, WF2, WF3, and the WF4 cameras; the current QLWFPC2 analysis
algorithm sends all of the image data from one WFPC2 camera to a single
compute (slave) node for analysis — the increase in computation time for
3 (5) processors compared to 2 (4) processors reflects the underlying 4-fold
partitioning of a single WFPC2 data set. Spreading the analysis of data from
a WFPC2 camera to all compute nodes would improve the computation time
for 3 and 5 (and more) processors but would not improve the results for 1, 2
and 4 processors which are already optimal.
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MATPHOT: Stellar Photometry and Astrometry with Discrete Point Spread
Functions

e Software (Source code and documentation)

MNRAS article describing the MATPHOT algorithm
Software (Source code and documentation)
MATPHOT interpolant ported to a Xilinx FPGA at the NCSA!
AAS 205 poster
AI2004 presentation

Stellar photometry and astrometry with discrete point spread
functions

Mighell, K. J. 2005, Monthly Notices of the Royal Astronomical Society, 316, 861-878
(11 August 2005)

The key features of the MATPHOT algorithm for precise and accurate stellar photometry and astrometry
using discrete point spread functions (PSFs) are described. A discrete PSF is a sampled version of a
continuous PSF, which describes the two-dimensional probability distribution of photons from a point
source (star) just above the detector. The shape information about the photon scattering pattern of a discrete
PSF is typically encoded using a numerical table (matrix) or an FITS (Flexible Image Transport System)
image file. Discrete PSFs are shifted within an observational model using a 21-pixel-wide damped sinc
function, and position-partial derivatives are computed using a five-point numerical differentiation formula.
Precise and accurate stellar photometry and astrometry are achieved with undersampled CCD (charge-
coupled device) observations by using supersampled discrete PSFs that are sampled two, three or more times
more finely than the observational data. The precision and accuracy of the MATPHOT algorithm is
demonstrated by using the c-language mpd code to analyse simulated CCD stellar observations; measured
performance is compared with a theoretical performance model. Detailed analysis of simulated Next
Generation Space Telescope observations demonstrate that millipixel relative astrometry and mmag
photometric precision is achievable with complicated space-based discrete PSFs.
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Online MNRAS abstract

Online MNRAS article (if a subscriber to MNRAS)
PDF version of article (... if not)

astro-ph/0505455 (_PDF) astro-ph preprint

MATPHOT interpolant ported to a Xilinx FPGA at the NCSA!

The National Center for Supercomputer Applications (NCSA) and the Ohio Supercomputer Center
(OSC) sponsored the Reconfigurable Systems Summer Institute which was held July 11--13, 2005 at

the Beckman Institute for Advanced Science and Technology on the campus of the University of
Illinois at Urbana-Champaign.

Volodymyr Kindratenko, a senior research scientist at NCSA, gave a presentation

First-hand experience on porting MATPHOT code to SRC platform ( PPT) ( PDF)

based on the MATPHOT code for stellar photometry and astrometry with discrete point spread
functions.

Dr. Kindratenko analyzed the MATHOT code and determined that the current implementation
spends approximately 90% of the total computation time calculating the two-dimensional damped
sinc interpolation of PSF models. Kindratenko ported the C implementation of the interpolation
algorithm to an SRC MAPstation which is based on SRC's patented MAP processor that has 2 Xilinx
Field Programmable Gate Arrays ( FPGAs).

American Astronomical Society 205th Meeting poster #153.09
2005 January 13, San Diego, CA

Tha [ ETPHOT Alqeati for Avsursde snd Pracive Stellsr
Fharamcrnclising Qiserete Pativ Spredd Functions

The MATPHOT Algorithm for Accurate and Precise Stellar Photometry and
Astrometry Using Discrete Point Spread Functions

AAS abstract
ADS abstract
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Mathematical Challenges in Astronomical Imaging
Institute for Pure and Applied Mathematics

2004 January 27, UCLA, Los Angeles, CA

AT

PDF version of the AI12004 poster

Mathematical Challenges of using Point Spread Function Analysis Algorithms in Astronomical Imaging
Ken Mighell (National Optical Astronomical Observatory)

PDF version of the presentation

MATPHOT release: 20050CT28
Retrieve the MX source code file:

e MX source code gzipped tar ball:

(M- click the right mouse button on this link)

Build MX (tested on Apple OS X Tiger and RedHat Linux 7.2):

e Unpack the tar ball by typing the following command:
zcat mx_200510281613.tgz | tar -xvf -

e Go down to the new mx directory:

cd mx

e Build MX:

make

CHECK: If the file exists, you have built MATPHOT!

Now try out MATPHOT:

e Go down to the src/mpd directory:

http://www.noao.edu/staff/mighell/matphot/ Page 3 of 6
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cd sr¢/mpd

e Type the following command:

o demos/ngst
and you will see MATPHOT analysis of 10 simulated
Next Generation Space Telescope observations.

e Now start the ds9 astronomical image display
by typing the following command:
o ds9

We can see the MATPHOT fitting process live using ds9
by typing the following command:

e demos/ngst

COT

Mode] Mm— w1 csidual

e We can simulate 20,000 NGST observations
by typing the following commands:

e demos/ngst_20000 > ngstx2 &
e tail -f ngstx2

This will take a while...
and will go faster if ds9 is not used to visualize the fitting process of all 20,000 stars :-)

When finished, use custom SuperMongo macros to look at the results
by typing the following command:

® sm/go ngstx

The resultant plot should look like the following plot:

http://www.noao.edu/staff/mighell/matphot/ Page 4 of 6
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The grey lines are the predicted median values; the wide grey bands show the predicted top
fence range of the box-and-whiskers plots; and the dashed grey lines show the predicted 5-
sigma limits. This plot shows that millipixel relative astrometry and millimag photometric
accuracy is achievable with very complicated space-based discrete Point Spread Functions. See
the AAS 205 poster for more details.

Kenneth Mighell

Associate Scientist

Kitt Peak National Observatory
National Optical Astronomy Observatory

EMAIL: mighell@noao.edu

MAIL: P.O. Box 26732, Tucson, AZ 85726-6732

FEDEX: 950 N. Cherry Ave., Tucson, AZ
PHONE: (520) 318-8391

http://www.noao.edu/staff/mighell/matphot/
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QLWFPC2: Quick-Look WFPC2 Stellar Photometry based on the Message Passing Interface

QLWFPC2 is a new parallel-processing stellar photometry code which is designed to do quick-look
analysis of two entire WFPC2 observations from the Hubble Space Telescope in under 5 seconds
using a fast Beowulf cluster with a Gigabit-Ethernet local network. This program is written in ANSI
C and uses MPICH implementation of the Message Passing Interface from the Argonne National
Laboratory for the parallel-processing communications, the CFITSIO library (from HEASARC at
NASA's GSFC) for reading the standard FITS files from the HST Data Archive, and the Parameter
Interface Library (from the INTEGRAL Science Data Center) for the IRAF parameter-file user
interface. QLWFPC2 running on 4 processors takes about 2.4 seconds to analyze the WFPC2
archive datasets u37ga407r.cO0.fits (F555W; 300 s) and u37ga401r.c0.fits (F814W; 300 s) of M54
(NGC 6715) which is the bright massive globular cluster near the center of the nearby Sagittarius
dwarf spheroidal galaxy. The analysis of these HST observations of M54 lead to the serendipitous
discovery of more than 50 new bright variable stars in the central region of M54. Most of the
candidate variables stars are found on the PC1 images of the cluster center --- a region where no
variables have been reported by previous ground-based studies of variables in M54. This discovery
is an example of how QLWFPC2 can be used to quickly explore the time domain of observations in
the HST Data Archive.
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QLWFPC2 Performance on a 5—node Beowulf Cluster
1 | T 1 T
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Figure 1. Typical QLWFPC2 performance results with two entire WFPC2 observations of a Local Group globular cluster
running on a 5-node Beowulf cluster with 1.8 GHz CPUs connect with Gigabit Ethernet. The blue points show actural
run times for 1 to 5 processors. The thin line shows a simple performance model based on measure cluster
performance metrics (network bandwidth, disk I/O bandwidth, and performace with a single CPU). The thick line shows
the theoretical limit of performance based on the system performace metrics. Note that the current version of
QLWFPC2 already meets the ideal performance values for 1, 2, and 4 processors. QLWFPC2 running on 4 processors
takes about 2.4 secons to anlyze the WFPC2 archive data sets u37ga407r.c0.fits (F555w; 300 s) and u37ga401r.c0.fits
(F814w; 300 s) of M54 which is the bright massive globular cluster near the center of the nearby Sagittarius dwarf
spheroidal galaxy. QLWFPC2 analyzed over 50,000 point source candidates and reported V, |, F555W, and F814W
photometry of 14,611 stars with signal-to-noise ratios of 8 or better.

ADASS XIlll conference proceedings article:

(PDF format)

(PostScript format)

AAS 203rd Meeting, January 2004
Session 4 Computation, Data Handling and Image Analysis
Poster, Monday, January 5, 2004, 9:20am-6:30pm, Grand Hall

[4.01] QLWFPC2: Parallel-Processing Quick-Look WFPC2 Stellar Photometry
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based on the Message Passing Interface

K. J. Mighell (National Optical Astronomy Observatory)

| describe a new parallel-processing stellar photometry code called QLWFPC2 which is designed to do quick-look
analysis of two entire WFPC2 observations from the Hubble Space Telescope in under 5 seconds using a fast Beowulf
cluster with a Gigabit Ethernet local network. This program is written in ANSI/ISO C and uses the MPICH
implementation of the Message Passing Interface from the Argonne National Laboratory for the parallel-processing
communications, the CFITSIO library (from HEASARC at NASA's GSFC) for reading the standard FITS files from the
HST Data Archive and the Parameter Interface Library (from the INTEGRAL Science Data Center) for the IRAF
parameter-file user interface. QLWFPC2 running on 4 processors takes about 2.4 seconds to analyze WFPC2 archive
datasets u37ga407r.c0.fits (F555W; 300 s) and u37ga401r.c0.fits (F814W; 300 s) of M54 (NGC 6715) which is the
bright massive globular cluster near the center of the nearby Sagittarius dwarf spheroidal galaxy. The analysis of these
HST observations of M54 lead to the serendipitous discovery of more than 50 new bright variable stars in the central
region of M54. Most of the candidate variables stars are found on the PC1 images of the cluster center --- a region
where no variables have been reported by previous ground-based studies of variables in M54. This discovery is an
example of how QLWFPC2 can be used to quickly explore the time domain of observations in the HST Data Archive.

This work is supported by a grant from the National Aeronautics and Space Administration (NASA), Order No. S-13811-
G, which was awarded by the Applied Information Systems Research Program (AISRP) of NASA's Office of Space
Science (NRA 01-0OSS-01).

If you would like more information about this abstract, please follow the link to
http://www.noao.edu/staff/mighell/glwfpc2.

203rd AAS meeting poster:

(PDF format)
(Microsoft PowerPoint format)

QLWFPC2 release: 20050CT28

Retrieve and build MX
(™ click on this link and follow the instructions)

Build QLWFPC2:
e From the main mx directory, go down to the src/qlwfpc2/src directory:
cd src/qlwfpc2/src

e QLWFPC2 uses the Message Passing Interface (MPI) standard, so in order to build QLWFPC2,
you will need to have a working implementation of MPI with a mpicc compiler command on your
machine.

e Assuming that you have mpicc working on your machine...
build QLWFPC2 by typing the following command:

make
CHECK: If the file ../../../bin/gqlwfpc2 exists, you have built QLWFPC2!
Now try out QLWFPC2:

e The simplest invocation with one processor:

e Type the following command:

http://www.noao.edu/staff/mighell/qlwfpc2/ Page 3 of 4
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Jqlwfpc2
and accept the default values for the first and second WFPC2 image filenames.
The program output is found in the following files:

e Same results using the mpirun command:

e Type the following command:
mpirun -np 1 qlwfpc2

Now give the names of the images on the command line:

e Type the following command:
mpirun -np 1 gqlwfpc2 data/v1.fits data/i1.fits
Note that you are no longer prompted for the name of the WFPC2 image files.

If you want to be verbose...

e Type the following command:
mpirun -np 1 glwfpc2 imagei=data/v1.fits image2=data/i1.fits

Now try QLWFPC2 with 4 processors:

e Type the following command:

mpirun -np 4 qlwfpc2 data/v1.fits data/i1.fits

The reported elapsed time should have gone down significantly :-)
--- if mpirun has access to 4 processors!

This work is supported by a grant from the

National Aeronautics and Space Administration (NASA),
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